
How Does Code Reviewing Feedback Evolve?
A Longitudinal Study at Dell EMC

Ruiyin Wen∗
McGill University, Canada
ruiyin.wen@mail.mcgill.ca

Maxime Lamothe
Polytechnique Montréal, Canada
maxime.lamothe@polymtl.ca

Shane McIntosh
University of Waterloo, Canada
shane.mcintosh@uwaterloo.ca

ABSTRACT

Code review is an integral part of modern software development,
where fellow developers critique the content, premise, and structure
of code changes. Organizations like Dell EMC have made consider-
able investment in code reviews, yet tracking the characteristics of
feedback that code reviews provide (a primary product of the code
reviewing process) is still a difficult process. To understand commu-
nity and personal feedback trends, we perform a longitudinal study
of 39,249 reviews that contain 248,695 review comments from a
proprietary project that is developed by Dell EMC. To investigate
generalizability, we replicate our study on the OpenStack Nova
project. Through an analysis guided by topic models, we observe
that more context-specific, technical feedback is introduced as the
studied projects and communities age and as the reviewers within
those communities accrue experience. This suggests that commu-
nities are reaping a larger return on investment in code review as
they grow accustomed to the practice and as reviewers hone their
skills. The code review trends uncovered by our models present
opportunities for enterprises to monitor reviewing tendencies and
improve knowledge transfer and reviewer skills.

ACM Reference Format:

Ruiyin Wen, Maxime Lamothe, and Shane McIntosh. 2022. How Does Code
Reviewing Feedback Evolve?: A Longitudinal Study at Dell EMC. In 44th

International Conference on Software Engineering: Software Engineering in

Practice (ICSE-SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3510457.3513039

1 INTRODUCTION

Code review is a process whereby fellow developers inspect code
changes and provide feedback. It is a mechanism by which software
teams improve software quality [32], signal project progress [2],
and collaboratively solve problems [39]. Nowadays, teams adopt
tools to help coordinate the code review process, which provide an
online interface and store data in a code review database.

Unlike the rigid code inspections of the past [14], the modern
variant of the code review process is informal; however, review dis-
cussions are still a rich source of information about the evolution of

∗The bulk of this work was completed during Mr. Wen’s internship at Dell EMC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513039

the system under review. Bacchelli and Bird [2] found that motiva-
tions for code review are both technical (e.g., catching defects early)
and non-technical (e.g., promote knowledge transfer). Rigby and
Bird [39] found that the focus of code review has shifted from defect
hunting to collaborative problem solving. Indeed, recent work has
reported that roughly 75% of the issues that are uncovered [28] and
fixed [6] during code review do not alter system behaviour, instead
aiming to improve system maintainability.

The value produced by a code review process is dependent on
the investment that reviewers make. For example, the existence of
a code review has been shown to share a weaker link with quality
indicators than the measures of review participation [31].

Little is known about how reviewing feedback (a primary value-
generating artifact of the code review process) changes as a commu-
nity and its stakeholders mature. Teams at Dell EMC have invested
in code review for several years, yet management lacked the appro-
priate instruments and tools to understand how reviewing feedback
has been evolving. In particular, management at Dell EMC would
benefit from a cost-effective way to track community and personal
development trends.

To that end, in this paper, we present an empirical study of code
review feedback atDell EMC.We also replicate our approach on the
OpenStack community to compare our observations and generate a
dataset for reproducibility.1 More specifically, we train and analyze
topic models using a corpus of 248,695 comments from 39,249 code
change reviews (Section 2). Thesemodels show that context-specific
issues (e.g., API-related topics) are more prevalent than formatting
issues (Section 3). We then use the models to perform longitudinal
studies (Sections 4 & 5), which address the following questions:
RQ1. How does the prevalence of code review topics change

as a community ages?

Motivation: Prior work [41, 47] has analyzed the content
of code review discussions; however, little is known about
how this changes as a community matures. For example,
after introspection, a community may adjust its reviewing
focus to address its perceived shortcomings. Alternatively, a
community may tacitly degrade in its code reviewing focus.
Thus, we first set out to explore how the content of review
discussions change as a software community matures. For
this RQ, we concentrate on the overall maturity (age) of the
software community as an organization and set aside the
experience of developers in the community.
Results: Reviewing behaviour is rapidly evolving in Dell
EMC. Our topic models track these shifts in community
focus. For example, our results show that context-specific
feedback has become more prevalent over time. We also
observe shifting trends in code review process, logging and

1 https://figshare.com/s/d227f9f489898ab051bc

https://doi.org/10.1145/3510457.3513039
https://doi.org/10.1145/3510457.3513039
https://figshare.com/s/d227f9f489898ab051bc

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Ruiyin Wen, Maxime Lamothe, and Shane McIntosh

Table 1: An overview of the studied projects.

Project Scope #Changes #Cmts Years

Dell
EMC

Enterprise data
backup & recovery

12,702 94,524 4

OpenStack
Nova

Provisioning man-
agement for Open-
Stack

26,547 154,171 6

Total - 39,249 248,695 10

error messages, and object-oriented design in a period that
coincides with large changes in team composition.

RQ2. How does the prevalence of code review topics change

as reviewers accrue experience?

Motivation: A software community is made up of developers
who are ideally growing and improving. Priorwork [9, 23, 40]
has shown that the more experienced reviewers are often
the authors of review feedback that is perceived to be of
higher quality. Hence, we set out to better understand how
reviewers change their focus as they accrue experience.
Results: Coarse-grained experience indicators like developer
promotion to core teams do not coincide with a significant
change in reviewing topics; however, reviewing behaviour
does evolve when finer-grained experience indicators are
considered. Our topic models show that experienced review-
ers specialize in different ways according to the needs of their
communities. The more experienced Dell EMC reviewers
tend to focus more on context-specific, technical feedback,
suggesting that their reviewing skills are honed to provide
feedback with a greater return on investment. In addition, we
observe trends that coincide with team focus. For example, as
Dell EMC reviewers accrue experience, they tend to provide
more code style feedback, which coincides with a mentorship
investment that senior Dell EMC developers have made to
help in onboarding a recent influx of new developers.

2 CASE STUDY DESIGN

Below, we describe the subject projects (Section 2.1), summarize the
code review process (Section 2.2), and explain our approaches to
data extraction (Section 2.3) and training topic models (Section 2.4).

2.1 Studied Projects

The primary studied data set is extracted a proprietary project
developed by Dell EMC. The project is large and rapidly evolving
with a globally distributed development community and userbase.
Table 1 provides an overview of the studied projects. The Dell
EMC project provides an enterprise solution that orchestrates data
backup for disaster recovery. Customers of the Dell EMC solution
include major players in several market sectors, such as financial,
aerospace, and educational institutions.

Due to legal constraints, we cannot share all of the technical
details of our analysis of Dell EMC. Therefore, we complement
our analysis of Dell EMC with an open source project, Open-
Stack Nova, which allows us to share a replication package1 and

Code
Review

Repository

(API)
Document

Document
Inline and
General

comments

Text Preprocessing
URL/Non-

alphabet removal
Review

Concatenation
Lemmatization

Text corpus
for analysisStop words

removal

LDA models
with 10 topics

Selection using the largest Rn

Section 2.3

Section 2.4
LDA Model Building

with 10
topics

with 15
topics

with 20
topics ……

with 50
topics

Figure 1: The data preparation andmodel training processes.

improve the reproducibility of our paper. The studied OpenStack
community develops software that manages large pools of compute,
storage, and networking resources, and is used to support a wide
array of business applications. We analyze Nova, the provisioning
management system, because it attracts the most developers when
compared to the other OpenStack projects. As a cross-company
open source community, OpenStack has a vested interest in im-
proving their code review process. In the past, researchers have
used data from the OpenStack community to evaluate reviewer
recommendation approaches [45], analyze the relationship between
reviewing and authoring expertise [44], evaluate the fairness of
code reviews [15], study the career paths of developers [48], and
study company participation in open source development [16].

2.2 The Code Review Process

We analyze review comments from the Dell EMC and OpenStack
Nova code review repositories. To provide context to our analysis,
we describe the code review process of OpenStack Nova. A similar
process is employed at Dell EMC.

The OpenStack community uses Gerrit—a web-based review
tool that tightly integrates with the Git version control system. The
code review process is comprised of five steps:

(1) The author uploads changes to the Gerrit server. A re-
view is initiated by uploading changes to Gerrit.

(2) The Gerrit server performs automatic verification. As
a part of Continuous Integration (CI), the Gerrit server of the
OpenStack community initiates verification of the change
to check for simple coding mistakes (e.g., through linters
and automated testing).

(3) The reviewers inspect the changes and initiate discus-

sion. Reviewers may provide inline comments, i.e., comments
that correspond to lines within the change.

(4) The author replies to the reviewers and/or revises her

code (if necessary). The author may discuss with review-
ers by replying to their comments. If the change is not ap-
proved for integration (e.g., due to insufficient support from
reviewers or verification failure), the author may improve
the change by addressing the concerns.

(5) Integrate the approved code. Steps 1–4 may be repeated
multiple times. Hence, a change may incur multiple rounds
of code review. Once the reviewers are satisfiedwith the code,
the author may add the change to the queue for integration.

How Does Code Reviewing Feedback Evolve? ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

2.3 Data Extraction and Preprocessing

Figure 1 provides an overview of our data extraction procedure. We
train our topic models using a text corpus that includes reviewer-
produced inline and general comments. Our industrial partners at
Dell EMC provided us with access to their code review archives
from which we can extract the code review comments. To extract
OpenStack Nova data, we use the Gerrit API.2

To mitigate the impact of noise on our topic models, we first
filter out the comments that were produced by bots (e.g., integration
testing bots) and replies that were written by the authors of the
changes. After applying these filters, our data set contains only the
comments that were written by reviewers.

Next, we identify whether the comments are natural language
or code by using NLoN, an R package that uses machine learning to
classify documents as natural language or not [27]. We then apply
standard text preprocessing techniques [21] to each document,
removing URLs and non-alphabetical characters, converting words
to lower case, removing stop words,3 and applying lemmatization to
each token of the comment corpus. Lemmatization maps different
conjugated forms of a word to their base form according to its
part-of-speech tag. We use lemmatization instead of stemming [37],
as it tends to better preserve term nuances [21].

2.4 Topic Modelling

Topic models are a type of statistical model that discover latent
topics in a corpus of text documents. In our setting, our corpora
are comprised of general and inline review comments, where each
comment is represented by one document.
AnOverviewof LDA.Weuse Latent Dirichlet Allocation (LDA) [8]
to detect the latent topics in the preprocessed comment corpus. Re-
searchers have developed several topic modelling techniques for
different goals [25, 43]. LDA meets our needs, as it groups discus-
sion topics in documents [8]. LDA is probabilistic in nature and
provides multiple ways to assess a topic and its related words. LDA
represents topics as probability distributions over the corpus, and
each word in the corpus follows a probability distribution over
a topic. LDA groups words into topics using their document co-
occurrence frequency. As similar-meaning words tend to co-occur
more frequently than different-meaning words, words within topics
are often semantically related. Thus, LDA can associate frequently
co-occurring words with higher level concepts (i.e., topics).
LDA Implementation. LDA infers a topic membership distribu-
tion from the documents within an input corpus. We use the LDA
implementation provided by MALLET [30], which derives LDA
models based on Gibbs sampling, and is widely used within the
software engineering domain [4, 22, 42].
Choice of Parameters. Training an LDA model requires settings
for several hyperparameters, such as the number of topics (𝐾),
the probability of topic 𝑡 in document 𝑑 (𝛼 = 𝑃 (𝑡 |𝑑)), and the
probability of word 𝑤 in topic 𝑡 (𝛽 = 𝑃 (𝑤 |𝑡)). In MALLET, 𝛼 and
𝛽 can be initialized at random and automatically tuned via a re-
sampling process; however, a𝐾 valuemust be set manually.When𝐾
is too large, topics may become fragmented and lose their semantic

2https://review.openstack.org/Documentation/rest-api.html
3https://www.ranks.nl/stopwords

meaning. When 𝐾 is too small, topics may become tangled and take
on more than one semantic meaning. Selecting a good 𝐾 value is
important but is still an open research problem [11].

It has been argued that topic models should be tuned indepen-
dently for different corpora [1]. Hence, we tune the LDA parameters,
striving to produce a topic model that has high stability, i.e., fu-
ture researchers can easily reproduce a similar topic model using
our data set. To achieve model stability, we first train models with
𝐾 = [10..50] five times with randomly initialized 𝛼 and 𝛽 values.
Then, for each set of models with the same 𝐾 value, we calculate
the 𝑅𝑛—a measure of the cross-run similarity of topics [1]. More
specifically, 𝑅𝑛 is the median number of occurrences of 𝑛 terms that
appear in all topics in all runs.

We observe that the 𝑅𝑛 curves are the highest when 𝐾 = 10 for
both studied projects, i.e., the topics from the set of topic models
that were produced with 𝐾 = 10 share the most similarity with
each other and are hence the most stable. Therefore, we use the
𝐾 = 10 setting for our analyses.
Output of LDA. Once trained on our preprocessed data, LDA pro-
duces a set of topics that contain statistical distributions of words in
the corpus. The words with higher probabilities often correspond
to a related concept. For example, if the words with the highest
probabilities in a topic are “log”, “message”, and “error”, we suspect
that the topic is related to logging and exception handling, and
would label the topic as such.

LDA also generates a distribution of topic membership scores
for any given document. More specifically, for a given document 𝑑𝑖 ,
the LDA model can produce a membership score 0 ≤ 𝛿 (𝑑𝑖 , 𝑡𝑘) ≤ 1,
which indicates the strength of the relationship between 𝑑𝑖 and
topic 𝑡𝑘 (larger values indicate stronger relationships). For example,
the review comment “provide more straightforward error messages
and log them appropriately” will have a strong topic membership
score for the logging and exception handling topic described above.

3 TOPIC PREVALENCE

Prior work has analyzed the contents of review comments. For
example, Bacchelli and Bird [2] found that code reviews at Microsoft
contain code improvement suggestions and requests for additional
detail, in addition to addressing code defects. Mäntylä et al. [28]
and Beller et al. [6] find that there are roughly three maintainability
comments for every functionality one in the code reviews of several
proprietary and open source systems. Prior to addressing our RQs,
we set out to explore the prevalence of topics in our corpus.

3.1 Approach

We identify the high-level concepts that the LDA topics highlight
by reading the 20 terms and 20 unprocessed review comments with
the strongest association to each topic. We select the terms with
the top 20 term weights for each topic. When ordering the terms
that comprise a topic, we take inspiration from the Term Frequency
Inverse Document Frequency (TF-IDF) concept. The TF is mapped
to the term weight within the topic. The IDF is mapped to the
Inverse Topic Frequency (ITF). We order terms by their TF-ITF
score—terms with high term weight scores that appear in few other
topics are considered first in our topic labelling process.

https://review.openstack.org/Documentation/rest-api.html
https://www.ranks.nl/stopwords

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Ruiyin Wen, Maxime Lamothe, and Shane McIntosh

Table 2: The LDA topic themes, labels, and share values.

Theme OpenStack Nova Share Sample Quote taken from OpenStack Nova Dell EMC Project Share

Context
Specific

Volumes and Storage
Management 6.1

"bdm.volume_id at this point is the old volume because
we haven’t updated the BDM yet, that happens on L5051.
So this isn’t taking into account if we failed or not. [...]"

File Locations 4.5

Provisioning
Decision Making 4.4

"[...] there is no single resource provider which has all of those
resources. Instead of creating a resource provider like this,
what you want to do is compute node as done in the super class
and then extend its inventory to add the custom resource class. [...]"

Project Configuration 6.5

Virtual Machine 5.1 "[...] the container setup may deny the ability to mount filesystems
inside as a security restriction. [...] Project Terminology 8.8

API Issues 10.5
"[...] why are we making the proxy BM REST API in nova
support keystone v3 when it’s deprecated at the 2.36 microversion
and people really shouldn’t be using this proxy API anyway [...]"

Exception
Handling

Exception Handling,
Logging and User-
Facing Error Msg

7.3
"[...] I’d think logging a warning and not stacktracing would be
sufficient since this is just a best attempt to cleanup the failed
build[...]"

Logging and User-
Facing Error Msg 9.3

Exception Handling
and Memory Man-
agement

8.8

Language
Specific Python Collections 8.1

"You can use the field name dict access and use
collections.defaultdict(list) to reduce the complexity of the above
to just this: [...]"

String/Buffer Issues 5.4

Design
Object Oriented
Design 12.4

"[...] If we’re going to refactor spawn then can we consider
each method one-by-one and do the right thing for that method
rather than pushing them all to a ’helper’ class?"

Object Oriented
Design
and Concurrency

10.4

Function Design 11.9
Code Review
Process

Code Review Process
and Minor Issues 20 "[...] I think you may have gotten the bug number wrong

in the commit message?"
Code Review Process
and Minor Issues 14.8

Code Style Code Style 6.8 "[...] Per HACKING, please separate std libs
from 3rd party imports with a single newline [...]" Code Style 8.2

Unit Testing Unit Testing 6.2 "Should there be a unittest for this function? I didn’t see one. [...]"

We also analyze the 20 review comments with the strongest
association to the topic under analysis. We only include comments
with the highest 𝛿 (𝑑𝑖 , 𝑡𝑘) scores for each topic 𝑡𝑘 to avoid including
comments for which the topic membership is less clear. The first and
last authors collaboratively assigned labels to each topic following
the procedure outlined above, both authors agreed on the final
selection of all labels. As this was a discovery task, we did not
independently label topics to compute an agreement score.

We apply Barua et al.’s [4] topic share metric to each topic 𝑡𝑘 :

topic_share(𝑡𝑘) =
1
|𝐷 |

∑
∀𝑑𝑖 ,𝑑𝑖 ∈𝐷,

𝛿 (𝑑𝑖 ,𝑡𝑘) ≥0.1/0.05

𝛿 (𝑑𝑖 , 𝑡𝑘) (1)

where𝐷 is our corpus of comments and𝑑𝑖 is an individual comment.
The topic share measures the proportion of documents that contains
a specific topic. For example, 𝑡𝑜𝑝𝑖𝑐_𝑠ℎ𝑎𝑟𝑒 (𝑡1) = 0.28 indicates that
28% of the documents share a non-negligible association with 𝑡1.

Because we train topic models with 𝐾 = 10 topics, each topic
will have a minimum membership score of 1

10 = 0.1 for a (theoreti-
cal) document that is not associated with any topic. On the other
hand, if a document is associated with some topic 𝑡𝑖 , the topic mem-
bership score for some other non-related topics must be less than
0.1 or 0.05. Therefore, to keep the topics that have the minimum
membership score from skewing our topic share scores, we filter
out topic membership scores below 0.1.

3.2 Topic Identification

Below, we provide a sample comment from two topics that share
the same theme in both theDell EMC project and in our replication
on the OpenStack Nova project. In addition to these comments
(and 19 other similar comments for these topics), we analyze the
top 20 terms of the topics in the studied systems (40 terms total).

Are you intentionally indenting this much space for a command
that doesn’t fit? Also, because all these are at the same level it
makes it a bit harder to tell when commands begin and end.
Project: Dell EMC, topic_score(code style) = 0.96

No, this is correct indentation for a continued line. Visual indenta-
tion would only be 4 spaces, which would line up with the ‘return’
line below. Correct indentation is 2 levels, or 8 spaces.
Project: Nova, topic_score(code style) = 0.94

We label these topics as code style because the sample comments
present cosmetic issues, and the top terms are “space” and “blank”.

We present the labels that authors agree upon in Table 2. The full
mapping from topics to their most relevant comments is included
in our replication package.1 We include sample quotes of relevant
comments for the labels of OpenStack Nova in Table 2. We cannot
do the same for the Dell EMC project due to its proprietary nature.

How Does Code Reviewing Feedback Evolve? ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

3.3 General Observations

The proportion of review comments that are associatedwith context-
specific topics is on par with code style or code review process
discussions. Our results, presented in Table 2 show that roughly
half of the comments belong to technical topics that are related to
general software engineering concepts.

These results complement observations of prior work. For exam-
ple, Bacchelli and Bird [2] found that although general communica-
tion is an important aspect of code reviewing practice at Microsoft,
code improvement topics are more frequently discussed. Moreover,
our topic models yield a similar rate of code style issues (6.8%–9.2%)
as was observed through manual review inspection by Mäntylä and
Lassenius [28] in a different context (visual representation concerns
are raised in 9.8%–10.8% of their studied reviews).

4 LONGITUDINAL STUDY AT DELL EMC

In this section, we present the results of our study with respect
to our two research questions. For each question, we first present
our approach, including the measures we use to operationalize key
concepts, and then present our observations.

RQ1: How does the prevalence of code review

topics change as a community ages?

RQ1: Approach: To study how topic popularity changes over time,
we analyze trends using the topic impactmeasure [4], which defines
the impact of a topic 𝑡𝑘 in month𝑚 as:

topic_impact(𝑡𝑘 ,𝑚) = 1
|𝐷 (𝑚) |

∑
∀𝑑𝑖 ,𝑑𝑖 ∈𝐷 (𝑚),
𝛿 (𝑑𝑖 ,𝑡𝑘) ≥0.1

𝛿 (𝑑𝑖 , 𝑡𝑘) (2)

where 𝐷 (𝑚) is the set of review comments written in month 𝑚.
In other words, topic impact measures the proportion of review
comments that are associated with a topic 𝑡𝑘 in a month𝑚. Similar
to the topic share measure, we keep negligible membership scores
from skewing topic impact values by filtering out topics that have
membership scores below 1

𝐾
= 0.1.4

We first compute the topic impact score in all of the studied
months for each topic. Then, we show key plots of the trends over
time. We then analyze the trends of topics in both projects that
belong to a similar concept. In addition to the raw values (scatterplot
points), we plot a trend line using Loess-smoothed regression lines.
The translucent grey shaded area shows the 95% confidence interval.
We also plot vertical dashed lines at the start of each year to aid in
the visual inspection of periodicity of topic impact over time.

To determine if the impact of a topic is significantly increasing
or decreasing over time, we use the Cox-Stuart trend test [12] (two-
tailed, 𝛼 = 0.05), which compares earlier data points to later ones.

RQ1: Results: We observe three trends in the prevalence of code
review topics as communities age.

Observation 1 — Reviewers tend to provide fewer com-

ments related to code review process as development teams

stabilize. Code review process topics mainly include comments that

4A sensitivity analysis that explores threshold values up to 0.2 shows no significant
change in topic trends. See the replication package for more detail.

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

0.10

0.15

0.20

0.25

20
11

07

20
12

01

20
12

07

20
13

01

20
13

07

20
14

01

20
14

07

20
15

01

20
15

07

20
16

01

20
16

07

20
17

01

20
17

07

20
18

01

Month

To
pi

c
Im

pa
ct

Label ● ●Code Review Process (Dell EMC) Code Review Process (Nova) Proj ● Dell EMC Nova

Figure 2: The impact score of topics discussing Code Review
Process issues as the studied projects age (RQ1).

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.050

0.075

0.100

0.125

0.150

20
11

07

20
12

01

20
12

07

20
13

01

20
13

07

20
14

01

20
14

07

20
15

01

20
15

07

20
16

01

20
16

07

20
17

01

20
17

07

20
18

01

Month
To

pi
c

Im
pa

ct

Proj ● Dell EMC Nova Label ● ● ●E.H. & Memory Mgmt. E.H., Log & Err Msg. Log & Err. Msg.

Figure 3: Exception Handling topics over time (RQ1).

address issues related to procedural formalities and minor issues
of the code review process (e.g., correctly formatting the commit
message, or referencing the correct bug number). We observe that
the trend of this topic in the Dell EMC project is non-monotonic,
slightly increasing before late 2015 and decreasing afterwards, as
shown in Figure 2. We discussed this with a development manager
from the Dell EMC project who explained that the period with the
steadiest growth (early/mid 2015) coincides with a large change
in the composition of the development team. During this period,
there was a large influx of new members into the development
team. This may explain why more comments appear with respect
to code review process in that period. As the new members became
more familiar with the code review process, the topic trend begins
to descend (early 2016).

Observation 2 — While exception handling and memory
management shows a downward trend, there is a shift to-

wards an upward trend for the logging and user-facing error
message topic in late 2015. There are twoDell EMC topics on Ex-
ception Handling. One is related to exception handling and memory
management, and the other is related to logging and user-facing er-
ror messages (Figure 3). The Dell EMC project is primarily written
in C. Hence, members in the Dell EMC community discuss excep-
tion handling issues related to memory management frequently
enough for our LDA models to create a distinct topic in this theme.

Dell EMC developers and operators use system logs to debug
software components and diagnose and recover from issues at run-
time. Thus, it is crucial that log messages are clear and concise. The
trough and subsequent growth in logging andmemorymanagement
coincides with the same influx of new developers (cf. Observation
1), suggesting that the change of group dynamics could also affect
the choice of discussion topics in the community.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Ruiyin Wen, Maxime Lamothe, and Shane McIntosh

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.050

0.075

0.100

0.125

0.150

20
11

07

20
12

01

20
12

07

20
13

01

20
13

07

20
14

01

20
14

07

20
15

01

20
15

07

20
16

01

20
16

07

20
17

01

20
17

07

20
18

01

Month

To
pi

c
Im

pa
ct

Proj ● Dell EMC Nova Label ● ● ●Function Design OO Design OO Design & Concurrency

Figure 4: Design topics over time (RQ1).

Observation 3 — Although the function design topic has a

decreasing trend, the object-oriented design and concurrency
topic has a trend that shifted directions in Q1 2016. TwoDell
EMC topics share the design theme. Since design is crucial to the
structure of a system, seeing that design-related topics are showing
a decreasing trend in Figure 4 may signal to community members
that an appraisal is needed. For example, the function design topic
has a consistent downward trend.

Figure 4 also shows that in early 2016, the object-oriented design
and concurrency topic shifts from an increasing trend to decreas-
ing one. In addition, the decreasing function design trend flattens
out. A manager at Dell EMC explained that these trend changes
coincide with a shift of a number of highly active staff members
from an area of the codebase that is primarily implemented in
object-oriented languages like C++ and Java to another area that is
primarily implemented in procedural languages like C.

RQ1: The topics covered by reviewing feedback are continually evolv-
ing at Dell EMC. Topic models can highlight these evolving trends,

which often coincide with project events of significance.

RQ2: How does the prevalence of code review

topics change as reviewers accrue experience?

RQ2: Approach: We analyze the relationship between reviewer ex-
perience and the prevalence of topics in their review feedback by (1)
using heuristics to estimate reviewer experience and (2) calculating
the topic impact over different experience levels.

Reviewer ExperienceHeuristic byNumber ofReviews.We
use the number of prior comments to estimate reviewer experience.
For example, a reviewer who has written 100 comments prior to
writing comment C has an experience of 100 when C was written.
This assumes that reviewers gain experience as they write com-
ments. Mockus and Herbsleb [33] found a link between developer
expertise and the number of changes that a developer has writ-
ten. Thongtanunam et al. [44] showed that the concept extends to
reviewing activity. Thus, we believe that our assumption is sound.

To avoid oversampling the experience signal, we group experi-
ence scores into 100 levels. According to our heuristic, a reviewer’s
experience score (slightly) grows after each comment that they
write. Since the experience score is heavily right skewed (i.e., there
are farmore inexperienced reviewers than experienced ones), group-
ing experience values using equidistant thresholds will undersam-
ple the low experience values and oversample the high experience

● ●

●

●

●

● ●
●

●

● ● ●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

● ●
● ●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.025

0.050

0.075

0.100

0 25 50 75 10
0

Experience Level

To
pi

c
Im

pa
ct

Proj ● Dell EMC Nova Label ● ●Code Style (Dell EMC) Code Style (Nova)

Figure 5: The impact score of topics discussing Code Style
issues as the reviewers accrue experience (RQ2).

values. Therefore, we group them into 100 bins that contain an
equal number of reviewers. We select 100 as the number of bins
by analyzing the distribution of the data. Analysis of the data set
with 50 and 75 bins suggests that the general direction and shape
of the distribution remain consistent. We include the figures of the
50- and 75-bin experiments in our replication package.1

Topic Impact by Experience Levels. Similar to the topic pop-
ularity analysis of RQ1, we compute 𝑡𝑜𝑝𝑖𝑐_𝑒𝑥𝑝_𝑖𝑚𝑝𝑎𝑐𝑡—a measure
of topic prevalence for reviewers with a given level of experience.
We redefine the topic impact measure (Equation 2) to measure the
experience impact of a topic 𝑡𝑘 in an experience level 𝑥 :

topic_exp_impact(𝑡𝑘 , 𝑥) =
1

|𝐷 (𝑥) |
∑

∀𝑑𝑖 ,𝑑𝑖 ∈𝐷 (𝑥),
𝛿 (𝑑𝑖 ,𝑡𝑘) ≥0.1

𝛿 (𝑑𝑖 , 𝑡𝑘) (3)

where 𝐷 (𝑥) is the set of comments written by reviewers with ex-
perience level 𝑥 and 𝑡𝑜𝑝𝑖𝑐_𝑒𝑥𝑝_𝑖𝑚𝑝𝑎𝑐𝑡 is the proportion of review
comments that have a non-negligible association with topic 𝑡𝑘 (i.e.,
𝛿 (𝑑𝑖 , 𝑡𝑘) ≥ 0.1) for reviewers with experience level 𝑥 .5

For our experience level analysis, we show key plots of the trends.
Similar to RQ1, the plots contain the data points, Loess-smoothed
regression lines, and shaded 95% confidence intervals. We also apply
Cox-Stuart tests to each of the trends.

RQ2: Results: We make three observations about the prevalence of
code review topics as reviewers accrue experience.

Observation 4—As reviewers accrue experience, the trend

in the code style topic increases. Figure 5 shows that after a stable
period, the experience trend for code style increases in theDell EMC
project. On the surface, code style feedback seems to provide a low
return on investment, and having experienced reviewers spend their
effort on code style seems wasteful. Thus, the increasing trend may
raise concerns forDell EMCmanagement. However, in a follow-up
meeting, aDell EMCmanager explained that senior staff had raised
concerns about code style problems in recent teammeetings. Hence,
the rate at which code style concerns are being raised increases
with experience agrees with his first-hand experience.

Observation 5 — OO design and concurrency and function
design feedback tends to decrease as reviewers gain experi-

ence. Figure 6 shows that as reviewers gain more experience, they

5Similar to RQ1, a sensitivity analysis of thresholds of 0.1–0.2 yielded no significant
change in topic trends. See the replication package for more detail.

How Does Code Reviewing Feedback Evolve? ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
● ●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●
●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.02

0.04

0.06

0.08

0 25 50 75 10
0

Experience Level

To
pi

c
Im

pa
ct

Proj ● Dell EMC Nova Label ● ● ●Function Design OO Design OO Design & Concurrency

Figure 6: The impact score of topics discussing Design issues

as the reviewers accrue experience (RQ2).

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

● ●
●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.06

0.08

0.10

0 25 50 75 10
0

Experience Level

To
pi

c
Im

pa
ct

Label ● ●Code Review Process (Dell EMC) Code Review Process (Nova) Proj ● Dell EMC Nova

Figure 7: The impact score of topics discussing Code Review
Process issues, plotted with regard to reviewing experience.

tend to discuss design issues less often. Since function design covers
low level issues, reviewers with less project experience are able
to provide this context-agnostic type of feedback. Meanwhile, OO
design and concurrency only sees a sharp drop in discussion at the
upper experience levels. This may signal that while this topic may
not be as accessible as lower-level function design feedback, it still
does not require an expert.
Observation 6 — The code review process topic tends to de-

crease as reviewers accrue experience. Figure 7 shows a down-
ward trend of topic impact in code review process discussions for
Dell EMC reviewers when they become more experienced. Devel-
opers at Microsoft [9] and Mozilla [23] argue that when trying to
improve their changes, code review process comments are not as
helpful as more context-specific comments. The observed trend for
the code review process topic of Dell EMC suggests that most of the
experienced reviewers indeed follow this trend and provide fewer
process-related details in their review feedback.

RQ2: Reviewing behaviour also evolves are reviewers accrue expe-
rience. Topic models show that experienced reviewers specialize in

different ways according to the needs of their community.

5 OPENSTACK NOVA REPLICATION STUDY

In this section, we describe the results of our replication on Open-
Stack Nova as a comparison to the Dell EMC results.

RQ1: How does the prevalence of code review

topics change as a community ages?

Observation 1 — OpenStack Nova reviewers also tend to

provide fewer comments related to code review process over
time. While Dell EMC presents a non-monotonic trend for this
topic, Figure 2 shows a consistent decreasing trend of this topic
in Nova. The explicit Nova development guidelines,6 which have
been refined over time, may be contributing to this decrease.
Observation 2 — Fewer exception handling topics emerge in

Nova than Dell EMC, but trends in both communities are

decreasing. Since Nova is primarily written in Python, a language
with garbage collection built in, memory management is generally
not an issue that developers need to discuss. Hence, while two
exception handling topics emerged for Dell EMC we only observe
one topic in Nova (i.e., E.H., Log & Err Msg.). Figure 3 shows that
the Nova exception handling topic is also decreasing over time.

Similarly to Dell EMC, it is crucial for OpenStack Nova that
system log messages are clear and concise. The decreasing trends
in both organizations may indicate that either the community has
become more adept at logging and exception handling over time,
or that reviewers have put less effort into raising these concerns in
more recent time periods. In either case, the topic models can be
used to identify and monitor such trends.
Observation 3 — Similar to the function design topic in the

Dell EMC project, the object-oriented design topic in Nova

is showing a consistent downward trend. While two design

topics emerge at Dell EMC, only one such topic exists for Nova:
object-oriented design. Similar to Dell EMC, the downward trend
in design presented in Figure 4 may signal to community members
that an appraisal is needed.

RQ1: Although OpenStack and Dell EMC present different com-

munities with independent timelines, topic models can be used to

detect similar trends as their communities age.

RQ2: How does the prevalence of code review

topics change as reviewers accrue experience?

Observation 4 — Contrary to Dell EMC reviewers, as Nova

reviewers accrue experience, the trend in the code style topic
decreases. As previously discussed, having experienced reviewers
spend their effort on code style may be wasteful. Thus, although the
Dell EMC trend may have been informed by senior staff concerns,
the decreasing trend shown in Figure 5 for Nova is encouraging.
Observation 5 — Similar to function design inDell EMC, we

observe a decreasing trend forOO design and concurrency in
Nova. Figure 6 shows that as reviewers gain more experience, the
object-oriented design topic in Nova is less frequently raised. Since
the object-oriented programming skills are required for most Nova
developers, the barrier to entry for this type of comment is lower
than other topics. Thus, reviewers with less project experience may
find it easier to raise context-agnostic object-oriented design issues.
Observation 6 — The code review process topic also tends to

decrease for Nova as reviewers accrue experience. The ob-
served trends in Figure 7 for the code review process topics of both

6https://github.com/openstack/nova/blob/master/HACKING.rst

https://github.com/openstack/nova/blob/master/HACKING.rst

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Ruiyin Wen, Maxime Lamothe, and Shane McIntosh

studied projects suggest that most of the experienced reviewers in-
deed provide fewer process-related details in their review feedback.

RQ2: Although different communities may have different concerns,

reviewing behaviour does evolve as reviewers accrue experience.

6 THREATS TO VALIDITY

External validity. Threats to external validity have to do with the
generalizability of our results. We conduct an empirical study of
the Dell EMC community. Although we replicate our approach
on OpenStack, our results may not generalize to other settings.
Since OpenStack is open source, the community is comprised of
a broad spectrum of developers, including hobbyists and profes-
sionals. Moreover, the professional developers represent several
companies, each with its own corporate culture (e.g., IBM, NEC).
Although we only analyze two communities, the sample of develop-
ers and development cultures is rich and diverse, covering a broad
range of developer backgrounds.
Internal validity. Threats to internal validity have to do with
whether other plausible hypotheses could explain our results. Our
work focuses on comments that are recorded in code review plat-
forms as an indicator of the discussions that take place during
code review. Although the Dell EMC and OpenStack communities
tightly integrate their code review platforms into their develop-
ment cycle, in-person meetings or other communication media
(e.g., e-mail) could be used to supplement the discussions that are
happening on the platform. Unfortunately, explicit links between
code changes and other communication channels are scarce, and
recovering these links is a non-trivial research problem [3, 7].

We assume that changes in topic impact are due to changes in
time period or reviewer experience; however, confounding factors
may play a role. For example, the size of the backlog of tasks that
a developer is working on may also impact the type of feedback
that they provide. An initial exploration of the reviewer backlog
indicates that it shares a high correlation with reviewer experience.
Preliminary analyses that we performed to study the influence
of reviewer workload yields near-identical insights as our expe-
rience analysis in RQ2. Nonetheless, we plan to explore this and
other potential confounding factors, such as the phase of project
development and the features being reviewed in future work.
Construct validity. Threats to construct validity have to do with
the alignment of our choice of indicators with what we set out to
measure. Our experience heuristics are based on the number of prior
review comments in either dataset. Reviewers may gain experience
from other channels, e.g., development and review activities in
other projects. Nevertheless, we use an experience heuristic that
we can measure using the data that we have on hand.

To conduct our experiment, we need to select settings for: (1)
the number of topics in our LDA model (𝐾 = 10), (2) the time
units for RQ1 (months), and (3) the number of experience levels
for RQ2 (100). We have experimented with tuning parameters and
maximized the stability of our topic model; however, selecting
different settings may still yield different results. The goal of this
study is not to identify the optimal settings for these parameters, but
rather to examine whether and how reviewing feedback changes
as communities age and reviewers accrue experience.

7 RELATEDWORK

In this section, we discuss the related work with respect to code
review and topic modelling in software engineering.
Code Review. The proliferation of code review data, and tools
for analyzing it, have made several recent studies possible. Several
papers have shared data sets of (and tools for interfacing with)
Gerrit repositories [18, 34]. Since these data sets can be large and
difficult to understand, tools like ReDA [46] and Bicho [17] support
the analysis of review data. In the same spirit of openness, we share
the data from our analysis of OpenStack Nova.1

Code review is more than an exercise in defect hunting. Code
review also serves as a platform for knowledge transfer and col-
laborative problem solving [2]. Rigby and Storey [41] analyzed
interactions in the code review processes of five open source sys-
tems and found that in addition to defect prevention, developers
also talk about features, scope, and process issues. Baysal et al. [5]
performed an empirical study on WebKit and found the developer’s
affiliation and level of participation influence the outcome of code
review. Mäntylä and Lassenius [28] and Beller et al. [6] found that
review discussions raise and fix three maintainability issues for
every functional issue. Similar to prior work, we also analyze the
rich data stored in code reviewing archives; however, we set out to
better understand how reviewing feedback changes as communities
age and reviewers accrue experience.

Reviewer experience is a crucial factor that affects the value
derived from review comments. Bacchelli and Bird [2] analyzed
code review comments at Microsoft, and report that more prior
knowledge of the code triggers more valuable feedback. Bosu et
al. [9] analyzed the usefulness of review comments at Microsoft,
and found that reviewers with greater seniority tend to provide the
more useful comments. Rigby et al. [40] found that open source
contributors with more expertise in code review are the ones who
provide context-specific feedback. Di Biase et al. [13] found that
reviews that were conducted by multiple reviewers tend to be more
successful at finding security issues. Rahman et al. [38] developed
RevHelper, which helps developers discover whether their code
review comments are useful through a prediction model. To aid in
improving reviewing skill, we demonstrate the potential of and lay
the foundation for tool support for exploring personal and team
reviewing trends and tendencies.

Recent studies focus on different types of code review comments.
Pangsakulyanont et al. [36] used semantic similarity to group 72,000
review comments into different topics, and found that most code re-
view comments are often unrelated to defect prevention, with some
of them discussing trivial issues. Kononenko et al. [24] observed
that 54% of reviewed changes are bug-inducing, and concluded
that code reviewers tend to miss bugs. Kononenko et al. [23] sur-
veyed 88 core Mozilla developers and found that review quality is
mainly associated with the thoroughness of the feedback. More-
over, reviewers find it difficult to maintain their technical skillset
for writing high-quality reviews. Norikane et al. [35] conjectured
that different kinds of code review feedback affect the willingness
of a volunteer contributor to engage in open source software. Zhu
et al. [52] showed that improvements in code review management,
e.g., providing clearer guidelines for reviewers, make contribution
processes more efficient. The topic models in this paper can support

How Does Code Reviewing Feedback Evolve? ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

a community and reviewer analytics dashboard that would enable
data-grounded management of code review practices.
Topic Modelling. Topic models have been used in various soft-
ware engineering experiments. Xia et al. [49] used topic models to
recommend tags to describe the most important features of posted
content or projects. Zhao et al. [51] used LDA to extract topics from
discussions involving bug fixes in five open source projects, and
explore the relationship between the frequency of discussion and
bug reworking. Maskeri et al. [29] used LDA to extract business
topics from identifiers and comments in source code. We use LDA
to extract and identify topics from code review comments.

In addition to identifying topics from a text corpus, previous
work has also analyzed trends in emergent topics. Barua et al. [4]
used LDA to study how technical topics and programming lan-
guages on StackOverflow change over time. Linstead et al. [26]
applied LDA to source code and investigate the evolution of pro-
gramming concepts as codebases grow. Hindle et al. [20] applied
topic models on developer communication corpora within pre-
defined time windows, and visualize the topics and their trends
over time according to those windows. We focus on changes in
emergent topics over time and as developers accrue experience.

Since topic models have achieved broad adoption in software
engineering research, prior work also points out pitfalls and sug-
gests solutions. Chen et al. [11] surveyed 167 software engineering
papers that use topic models, pointing out pitfalls, such as inter-
pretation issues and a lack of exploration of the parameter space.
They suggest software engineering researchers to keep up with
the machine learning community while applying topic modelling
techniques. Hindle et al. [19] surveyed developers and project man-
agers about how they interpret topics generated by topic models,
finding that the level of difficulty for interpretation varies across
topics. We recognize the importance of topic model construction
and validation. We rely on work from the natural language process-
ing community [10, 50] to support us when training our models.
When interpreting our models, we solicit feedback from staff at
Dell EMC, who were able to provide valuable insights and point
to coinciding events to explain shifting trends.

8 CONCLUSIONS

To derive value from a code review process, it must produce valuable
feedback. While past work [6, 28] has explored the issues found and
fixed during code review, little is known about how review feedback
changes as communities age and its members accrue experience.

In this paper, we train topic models to identify latent topics in
the review comments at Dell EMC. To evaluate the generalizabil-
ity of our approach and provide an open replication package,1 we
replicate our analysis on OpenStack Nova. Through a study of
248,695 review comments in 39,249 changes, we observe that (1)
context-specific issues (e.g., API-related topics) are more frequently
discussed than formatting issues; (2) changes in the reviewing be-
haviour of a code review community often coincides with project
events of significance (e.g., large changes in team composition);
and (3) common trends in the topics that reviewers raise as they
accrue experience are rare, since they often tailor their feedback
to the needs of the communities that they serve. In our estimation,
the observations from our study have two key implications.

Monitoring Community and Reviewer Skill Development.

We believe that our topic models lay the necessary groundwork
for a reviewing feedback analytics framework. We observe that
the prevalent topics in code reviewing discussions change as a re-
view community evolves (RQ1). A tool that analyzes quantitative
data from topic models like ours could be used to track changes
in community and reviewer focus in a cost-effective, explainable,
and easily replicable manner. These changes can be compared with
qualitative data that is gathered from the development team to de-
tect whether the reviewing process is keeping up with community
expectations. In addition, reviewers could use such a low upkeep
system to monitor whether their personal feedback trends are meet-
ing their own reviewing goals.
Mentorship Programs in Code Review. Our findings suggest
that there is a gap between novice and experienced reviewers. Re-
sults from RQ2 show that the prevalent topics in code reviewing
discussions differ across experience levels. Knowledge transfer is
one of the main benefits of code review [2]. An explicit mentor-
ship program may help novice reviewers to hone their reviewing
skills more quickly. By receiving additional knowledge about the
feedback that experienced reviewers provide, the novice could accu-
mulate experience and produce more useful review comments more
quickly, without the need to accrue months or years of less effective
reviewing experience. For example, by providing novice reviewers
with trends and code review examples produced by experienced
reviewers, we can raise awareness of what a high quality review
looks like. This could take the form of constructive feedback like
“more experienced reviewers tend to discuss Code Review Process
issues less often, so try to put less emphasis on this in your future
reviews”.

The key contribution of this study is the evidence of signifi-
cant trends in reviewing behaviour and a set of measures that can
be tracked as communities age and their stakeholders accrue ex-
perience. More specifically, based on trends in emergent topics,
researchers and developers can build tools to suggest directions or
identify blind spots in the reviewing behaviour of communities and
individuals. For example, in future work, we plan to use our topic
models to build an analytics dashboard for monitoring reviewing
behaviour. Extracting reviewing behavior using our topic models
may help to better focus on topics of higher importance, yielding a
review process that generates more value for its community.

REFERENCES

[1] Amritanshu Agrawal, Wei Fu, and Tim Menzies. 2018. What is wrong with
topic modeling? And how to fix it using search-based software engineering.
Information and Software Technology (2018).

[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings of the International Conference on

Software Engineering (ICSE). IEEE, 712–721.
[3] Alberto Bacchelli, Michele Lanza, and Romain Robbes. 2010. Linking e-mails and

source code artifacts. In Proceedings of the International Conference on Software

Engineering (ICSE). ACM, 375–384.
[4] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. 2014. What are devel-

opers talking about? an analysis of topics and trends in stack overflow. Empirical

Software Engineering 19, 3 (2014), 619–654.
[5] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. 2013. The

influence of non-technical factors on code review. In Proceedings of the Working

Conference on Reverse Engineering (WCRE). IEEE, 122–131.
[6] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-

ern code reviews in open-source projects: Which problems do they fix?. In Pro-

ceedings of the Working Conference on Mining Software Repositories (MSR). ACM,
202–211.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Ruiyin Wen, Maxime Lamothe, and Shane McIntosh

[7] Christian Bird, Alex Gourley, and Prem Devanbu. 2007. Detecting patch submis-
sion and acceptance in oss projects. In Proceedings of the International Workshop

on Mining Software Repositories (MSR). IEEE, 26–26.
[8] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.

Journal of Machine Learning Research 3, Jan (2003), 993–1022.
[9] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics

of useful code reviews: An empirical study at microsoft. In Proceedings of the

Working Conference on Mining Software Repositories (MSR). IEEE, 146–156.
[10] Jonathan Chang, Jordan L Boyd-Graber, Sean Gerrish, ChongWang, and David M

Blei. 2009. Reading tea leaves: How humans interpret topic models.. In Nips,
Vol. 31. 1–9.

[11] Tse-Hsun Chen, Stephen W Thomas, and Ahmed E Hassan. 2016. A survey on
the use of topic models when mining software repositories. Empirical Software

Engineering 21, 5 (2016), 1843–1919.
[12] David Roxbee Cox and Alan Stuart. 1955. Some quick sign tests for trend in

location and dispersion. Biometrika 42, 1/2 (1955), 80–95.
[13] Marco di Biase, Magiel Bruntink, and Alberto Bacchelli. 2016. A security perspec-

tive on code review: The case of Chromium. In Proceedings of the International

Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
21–30.

[14] Michael E Fagan. 2001. Design and code inspections to reduce errors in program
development. In Pioneers and Their Contributions to Software Engineering. Springer,
301–334.

[15] Daniel M German, Gregorio Robles, Germán Poo-Caamaño, Xin Yang, Hajimu
Iida, and Katsuro Inoue. 2018. Was my contribution fairly reviewed? A framework
to study fairness in Modern Code Reviews. In Proceedings of the International

Conference on Software Engineering (ICSE). ACM, 523–534.
[16] Jesus M. Gonzalez-Barahona, Daniel Izquierdo-Cortazar, Stefano Maffulli, and

Gregorio Robles. 2013. Understanding How Companies Interact with Free Soft-
ware Communities. IEEE Software 30, 5 (2013), 38–45.

[17] Jesus M. Gonzalez-Barahona, Daniel Izquierdo-Cortazar, Gregorio Robles, and
Alvaro del Castillo. 2014. AnalyzingGerrit Code Review Parameterswith Bicho. In
Proceedings of the International Workshop on Software Quality and Maintainability

(SQM). 1–12.
[18] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, Ana Erika Camargo

Cruz, Kenji Fujiwara, and Hajima Iida. 2013. Who Does What during a Code
Review? Datasets of OSS Peer Review Repositories. In Proceedings of the Working

Conference on Mining Software Repositories (MSR). 49–52.
[19] Abram Hindle, Christian Bird, Thomas Zimmermann, and Nachiappan Nagappan.

2015. Do topics make sense to managers and developers? Empirical Software

Engineering 20, 2 (2015), 479–515.
[20] Abram Hindle, Michael W Godfrey, and Richard C Holt. 2009. What’s hot and

what’s not: Windowed developer topic analysis. In Proc. of the Int’l Conference on

Software Maintenance (ICSM). IEEE, 339–348.
[21] Dan Jurafsky. 2000. Speech & language processing. Pearson Education.
[22] Nafiseh Kahani, Mojtaba Bagherzadeh, Juergen Dingel, and James R Cordy. 2016.

The problems with eclipse modeling tools: a topic analysis of eclipse forums.
In Proceedings of the ACM/IEEE 19th International Conference on Model Driven

Engineering Languages and Systems. ACM, 227–237.
[23] Oleksii Kononenko, Olga Baysal, and Michael W Godfrey. 2016. Code review

quality: how developers see it. In Proceedings of the International Conference on

Software Engineering (ICSE). ACM, 1028–1038.
[24] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W

Godfrey. 2015. Investigating code review quality: Do people and participation
matter?. In Proceedings of the International Conference on Software Maintenance

and Evolution (ICSME). IEEE, 111–120.
[25] Victor Lavrenko and W Bruce Croft. 2001. Relevance based language models.

In Proceedings of the International Conference on Research and Development in

Information Retrieval. ACM, 120–127.
[26] Erik Linstead, Cristina Lopes, and Pierre Baldi. 2008. An application of latent

Dirichlet allocation to analyzing software evolution. In Proceedings of the In-

ternational Conference on Machine Learning and Applications (ICMLA). IEEE,
813–818.

[27] Mika V Mäntylä, Fabio Calefato, and Maelick Claes. 2018. Natural Language or
Not (NLoN) - A Package for Software Engineering Text Analysis Pipeline. In Proc.

of the 15th International Conf. on Mining Software Repositories (MSR). to appear.
[28] Mika V Mäntylä and Casper Lassenius. 2009. What types of defects are really

discovered in code reviews? Transactions on Software Engineering (TSE) 35, 3
(2009), 430–448.

[29] Girish Maskeri, Santonu Sarkar, and Kenneth Heafield. 2008. Mining business
topics in source code using latent dirichlet allocation. In Proceedings of the India

Software Engineering Conference. ACM, 113–120.
[30] Andrew Kachites McCallum. 2002. MALLET: A Machine Learning for Language

Toolkit. (2002). http://mallet.cs.umass.edu.
[31] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2014.

The impact of code review coverage and code review participation on software

quality: A case study of the qt, vtk, and itk projects. In Proceedings of the Working

Conference on Mining Software Repositories (MSR). ACM, 192–201.
[32] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2016.

An empirical study of the impact of modern code review practices on software
quality. Empirical Software Engineering 21, 5 (2016), 2146–2189.

[33] Audris Mockus and James D Herbsleb. 2002. Expertise browser: a quantitative
approach to identifying expertise. In Proceedings of the International Conference

on Software Engineering (ICSE). ACM, 503–512.
[34] Murtuza Mukadam, Christian Bird, and Peter C. Rigby. 2013. Gerrit Software

Code Review Data from Android. In Proc. of the 10th Working Conf. on Mining

Software Repositories (MSR). 45–48.
[35] Takuto Norikane, Akinori Ihara, and Kenichi Matsumoto. 2017. Which review

feedback did long-term contributors get on OSS projects?. In Proceedings of

the International Conference on Software Analysis, Evolution and Reengineering

(SANER). IEEE, 571–572.
[36] Thai Pangsakulyanont, Patanamon Thongtanunam, Daniel Port, and Hajimu

Iida. 2014. Assessing MCR discussion usefulness using semantic similarity. In
Proceedings of the International Workshop on Empirical Software Engineering in

Practice (IWESEP). IEEE, 49–54.
[37] Martin F Porter. 1980. An algorithm for suffix stripping. Program 14, 3 (1980),

130–137.
[38] Mohammad Masudur Rahman, Chanchal K Roy, and Raula G Kula. 2017. Predict-

ing usefulness of code review comments using textual features and developer
experience. In 2017 IEEE/ACM 14th International Conference on Mining Software

Repositories (MSR). IEEE, 215–226.
[39] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer

review practices. In Proceedings of the Joint Meeting on Foundations of Software

Engineering (FSE). ACM, 202–212.
[40] Peter C Rigby, Daniel M German, Laura Cowen, and Margaret-Anne Storey. 2014.

Peer review on open-source software projects: Parameters, statistical models,
and theory. Transactions on Software Engineering and Methodology (TOSEM) 23, 4
(2014), 35.

[41] Peter C Rigby and Margaret-Anne Storey. 2011. Understanding broadcast based
peer review on open source software projects. In Proceedings of the International

Conference on Software Engineering (ICSE). ACM, 541–550.
[42] Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking

about? a large scale study using stack overflow. Empirical Software Engineering

21, 3 (2016), 1192–1223.
[43] Yee Whye Teh, Michael I Jordan, Matthew J Beal, and David M Blei. 2004. Sharing

Clusters among Related Groups: Hierarchical Dirichlet Processes.. In Nips. 1385–
1392.

[44] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu Iida.
2016. Revisiting Code Ownership and Its Relationship with Software Quality in
the Scope of Modern Code Review. In Proceedings of the International Conference

on Software Engineering (ICSE). 1039–1050.
[45] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,

Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. 2015. Who should
review my code? A file location-based code-reviewer recommendation approach
for modern code review. In Proceedings of the International Conference on Software

Analysis, Evolution, and Reengineering (SANER). IEEE, 141–150.
[46] Patanamon Thongtanunam, Xin Yang, Norihiro Yoshida, Raula Gaikovina Kula,

Ana Erika Camargo Cruz, Kenji Fujiwara, and Hajimu Iida. 2014. ReDA: A
Web-based Visualization Tool for Analyzing Modern Code Review Dataset. In
Proceedings of the International Conference on Software Maintenance and Evolution

(ICSME). 605–608.
[47] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: evaluat-

ing contributions through discussion in GitHub. In Proceedings of the International
Symposium on Foundations of Software Engineering (FSE). ACM, 144–154.

[48] Perry van Wesel, Bin Lin, Gregorio Robles, and Alexander Serebrenik. 2017.
Reviewing Career Paths of the OpenStack Developers. In Proceedings of the

International Conference on Software Maintenance and Evolution (ICSME). 543–
548.

[49] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. 2013. Tag recommendation in
software information sites. In Proceedings of the Working Conference on Mining

Software Repositories (MSR). IEEE, 287–296.
[50] Weizhong Zhao, James J Chen, Roger Perkins, Zhichao Liu, Weigong Ge, Yijun

Ding, and Wen Zou. 2015. A heuristic approach to determine an appropriate
number of topics in topic modeling. BMC Bioinformatics 16, 13 (2015), S8.

[51] Yu Zhao, Feng Zhang, Emad Shihab, Ying Zou, and Ahmed E Hassan. 2016.
How Are Discussions Associated with Bug Reworking?: An Empirical Study on
Open Source Projects. In Proceedings of the International Symposium on Empirical

Software Engineering and Measurement (ESEM). ACM, 21:1–21:10.
[52] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. 2016. Effectiveness of code

contribution: from patch-based to pull-request-based tools. In Proceedings of the

International Symposium on Foundations of Software Engineering (FSE). ACM,
871–882.

	Abstract
	1 Introduction
	2 Case Study Design
	2.1 Studied Projects
	2.2 The Code Review Process
	2.3 Data Extraction and Preprocessing
	2.4 Topic Modelling

	3 Topic Prevalence
	3.1 Approach
	3.2 Topic Identification
	3.3 General Observations

	4 Longitudinal Study at Dell EMC
	5 OpenStack Nova Replication Study
	6 Threats to Validity
	7 Related Work
	8 Conclusions
	References

