
When APIs are Intentionally Bypassed: An Exploratory Study of
API Workarounds

Maxime Lamothe and Weiyi Shang
Department of Computer Science and Software Engineering

Concordia University
Montreal, Canada

{max_lam,shang}@encs.concordia.ca

ABSTRACT
Application programming interfaces (APIs) have become ubiquitous
in software development. However, external APIs are not guaran-
teed to contain every desirable feature, nor are they immune to
software defects. Therefore, API users will sometimes be faced with
situations where a current API does not satisfy all of their require-
ments, but migrating to another API is costly. In these cases, due
to the lack of communication channels between API developers
and users, API users may intentionally bypass an existing API after
inquiring into workarounds for their API problems with online com-
munities. Thismechanism takes the API developer out of the conver-
sation, potentially leaving API defects unreported and desirable API
features undiscovered. In this paper we explore API workaround
inquiries from API users on Stack Overflow. We uncover general
reasons why API users inquire about API workarounds, and gen-
eral solutions to API workaround requests. Furthermore, using
workaround implementations in Stack Overflow answers, we de-
velop three API workaround implementation patterns. We identify
instances of these patterns in real-life open source projects and
determine their value for API developers from their responses to
feature requests based on the identified API workarounds.

ACM Reference Format:
Maxime Lamothe and Weiyi Shang. 2020. When APIs are Intentionally By-
passed: An Exploratory Study of API Workarounds. In 42nd International
Conference on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3377811.3380433

1 INTRODUCTION
As software applications increase in size and complexity, Appli-
cation Programming Interfaces (APIs) become an integral part of
software development [51]. Software is now often produced with
help from a slew of APIs to speed up development and reduce
project overhead [15, 18]. Dependencies on general purpose frame-
works and libraries have been shown to impact a large proportion
of client project source code (up to 62%) [7]. Furthermore, publicly
available libraries are intricately interconnected. For example, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380433

Maven repository contains over 2.4 million reusable artifacts with
over 9 million dependency relationships [8].

This increased development speed comes at a price. By relying
on APIs, developers inevitably couple some of their functionality
to APIs over which they have little control [9]. This can be a chal-
lenge to developers as they are forced to deal with ever-evolving
APIs [18, 47]. Difficulties with changing dependencies have led to
terminology like “dependency hell” [9]. Studies show that pack-
ages are updated within two months of their releases more than
50% of the time [17]; while a sizable portion of API changes break
backwards compatibility [68] and have been found to impact 39%
of software that uses the APIs [10]. For example, the now infamous
“left-pad” incident broke thousands of libraries, including React and
Babel due to the removal of 11 lines of code from NPM [22].

More importantly, APIs, as software products themselves, may
suffer from typical software issues, such as defects or missing fea-
tures [13]. However, due to the high cost associated with changing
or migrating to a different API [18], developers who use these
APIs (API users) ultimately suffer from API defects [9, 39]. Heavy
dependence on APIs has become a costly challenge for API users.

Knowledge gaps exist between API developers and the API
users [16, 54]. Often, API developers only communicate about their
APIs through API documentation such as wikis, manuals, tutori-
als, or API code examples [14], which are only indirectly linked to
the API [16]. On the other hand, API users have limited access to
API developers and few channels to communicate their feedback.
Some APIs even require knowledge of internal politics to reliably
get patches accepted [9]. Lacking a direct feedback channel from
the API users can lead to situations where API developers must
rely on repeated user complaints to become aware of an existing
problem [14].

All too often, when users have issues with an API, for exam-
ple needing a new feature or experiencing a run-time problem,
users may choose to intentionally modify or bypass the API [9]. In
this paper we define API workarounds as source code produced
by API users, without official support from API developers, for
the intentional modification or bypassing of official APIs. These
workarounds allow API users to obtain their desired functionality
quickly and without going through potentially arduous commu-
nication with API developers. However, the introduction of API
workarounds presents a dilemma for API developers and users. On
the one hand, since these workarounds are created by API users
as temporary solutions, many of these workarounds may become
technical debt [50], endangering code quality and increasing future
maintenance cost [70]. On the other hand, interestingly, these API
workarounds may become a vehicle for the API developers to gain

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Maxime Lamothe and Weiyi Shang

feedbacks from API users, in order to improve the APIs (e.g., fixing
defects in the API).

In this paper, we conduct an exploratory study of APIworkarounds
requested and implemented by API users. To start our exploration,
we manually examine 400 posts from Stack Overflow, where we
found that API users request API workarounds for a variety of rea-
sons, such as dependency issues, missing functionality, and runtime
problems. These reasons illustrate inherent value for API devel-
opers since gaining access to these workarounds could improve
their APIs. Furthermore, we identified answers accepted by API
users who request API workarounds. By studying these answers,
we found that carrying out such API workarounds may not be a
trivial task. In particular, a majority of API workaround solutions
require special implementations to bypass the API.

To follow up on our exploratory study, we study workaround
implementations that are suggested in the Stack Overflow posts,
and we observe three generalized API workaround patterns. The
knowledge contained in the implementation of these patterns in
API user projects can help API developers improve their API by
adding desirable unsupported features, fixing unexpected behavior,
and improving backwards compatibility.

Since the three API workaround patterns were uncovered using
forum questions and answers, we seek to confirm their existence
in real-life API user code and confirm their usefulness with API
developers. Therefore, using five open-source APIs, we detected
these three patterns of API workarounds in open-source GitHub
projects. Finally, we submitted and observed 12 feature requests
to developers based on the API workarounds to improve the APIs.
Among these requests, five are already closed, and six more have
been confirmed by API developers as defects or missing features.

Our study and findings highlight the value of studying the usage
of APIs from API users as a means to bridge the gap between API
developer and API users in order to assist in the development and
maintenance of APIs.

Paper Organization. Section 2 provides real examples of API
workarounds requested on Stack Overflow to motivate this study.
Section 3 contains a qualitative study onAPIworkarounds. Section 4
presents three generalized API workaround patterns extracted from
API workaround implementations in Stack Overflow answers. Sec-
tion 5 presents an empirical study conducted to find and report
instances of three API workaround patterns. Section 6 provides a
brief summary of related prior work. Section 7 describes threats to
the validity of this study. Finally, Section 8 concludes the paper.

2 A MOTIVATING EXAMPLE
In this section, we present an example of API workaround inquiry
on Stack Overflow.

Figure 1 presents a question (Stack Overflow id: 34945023) in
which the poster (API user) inquires about working around the
Roslyn API. In particular, the API user requires access to data that
appears to exist in the Roslyn API; while such data cannot be ex-
ternally accessed by the API users. The API user provides a short
example of their desired functionality, and asks if this functionality
already exists in the API. The API user explains why they would
like the feature, and why they believe the feature should already
exist as part of the API. Finally, the API user provides a potential

Roslyn�SyntaxTree�Diff
�Asked 3�years,�7�months�ago �Active 3�years,�6�months�ago �641�timesViewed

5

2

Let's�say�I�have�two� s� �and� ,

where� �has�been�produced�by�applying�changes�to� .

SyntaxTree A B

B A

I�would�like�to�get�the�following�information:

SyntaxNodes�&�Tokens�that�have�been�removed�from� �to�produce�A B

SyntaxNodes�&�Tokens�that�have�been�added�to� �to�produce�A B

Is�there�an�API�for�this?

If�not,�how�can�this�be�efficiently�computed?

This�information�must�be�available�to�Roslyn,

since�unchanged� s�are�shared�between�the�trees.GreenNode

One�solution�I�can�think�of�is�to�use�

and�then�lookup�the�intersecting�tokens.

However�that�feels�like�a�hack�and�I'm�not�sure�if�it�is�always�accurate.

A�small�text�change�might�have�a�large�impact�on�a� :

(e.g.�replacing� �with� �in�an�expression�might�change�its�order/precedence)

SyntaxTree�GetChangedSpans��

SyntaxTree

� �

� � � �syntax diff abstract-syntax-tree roslyn roslyn-code-analysis

Feature Request

Proposed Workaround

Figure 1: An example of a developer requesting access to
data that exists in the Roslyn API but appears unaccessible

1

We� �that�lives�in�the�compiler�layer�and�thus�uses�green�nodes,�we�just

haven't�exposed�it�as�an�API.�This�is�what�we�use�to�drive�GetChangedSpans,�actually.�We

�didn't�expose�green�nodes�directly�because�that's�an�implementation�detail.

internally�have�a�differ

intentionally

There's�no�specific�reason�that�API�couldn't�be�public.�I�think�when�this�one�came�around�we�were

worried�about�how�one�actually�specs�what�the�behavior�is,�or�what's�a�minimal�"goodness"�you�can

expect�from�the�diff.�That,�and�we�didn't�have�a�motivating�scenario�to�actually�make�sure�our�work

was�useful.

Confirmation that the feature is not available

Figure 2: Example of an API developer answering an API
workaround request for data that exists in the Roslyn API
but appears unaccessible

workaround solution to obtain the desired data, but still expresses
a desire for direct support from the API.

The accepted answer post, presented in Figure 2, was provided
by one of the API’s developers. Therefore, this post provides rare
insight into a direct information exchange between an API user
requesting an API workaround, and an API developer.

The API developer confirms that, as suspected by the API user,
the feature requested by the user is indeed available internally,
but was not exposed to the public since it can be considered an
implementation detail. The API developer claims that there is no
specific reason for that API to be hidden. The API developer also
mentions that they could not think of a motivating scenario for this
feature.

From this example, we can see that: 1) Scenarios of how APIs
are used by users may be unforeseen by API developers. 2) The
effort needed and challenges encountered by API users to make
API workarounds may not be trivial; while the requested feature/in-
formation may already exist internally in the API, or require much
less effort for API developers to accomplish than the API users. 3)
API workarounds provide valuable information for API developers
in order to understand the needs from the API users and to improve
their APIs.

This example shows that a disconnect can exist between API
developers and users. On the one hand, users sometimes prefer to
use public forums to request functionality rather than having direct
communication with the API developers. On the other hand, not
all API inquiries lead to responses from API developers, who may
miss these opportunities and fail to obtain outstanding sources of
knowledge from their API users, which they could use to improve
their API. Therefore, in this paper we explore API workarounds

When APIs are Intentionally Bypassed: An Exploratory Study of API Workarounds ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

and the knowledge that they contain, starting by performing a
qualitative study on Stack Overflow posts.

3 INQUIRIES ABOUT API WORKAROUNDS: A
QUALITATIVE STUDY

In this section, we present a qualitative study on Stack Overflow
posts where API users inquire about workarounds for APIs. More
specifically, we would like to uncover reasons why developers
request API workarounds and their solutions.

3.1 Collecting API workaround related posts
As presented in Section 2, we know that there exist Stack Overflow
posts that inquire about API workarounds. Example posts, like
the one presented in Figure 1, show that API users can request
workarounds to request extra functionality. Meanwhile, prior work
has shown that API users can use workarounds to bypass API
defects [57]. Therefore, there may exist multiple reasons for API
users to seek API workarounds. However, the reasons why API
users request workarounds have not been clearly established. In this
section, we therefore seek to systematically determine the various
reasons why API users request API workarounds. Furthermore, we
also seek to determine how API workaround requests are answered
to determine whether all API workaround requests actually require
API workarounds as answers. To determine why API workarounds
are requested, and how these requests are answered, we conduct a
search on a Stack Overflow post dataset that was released on 5 Jun
2018 [1]. The dataset consists of over 40M Stack Overflow questions
and answers.

There are over 252 thousand posts in the Stack Overflow dataset
that contain the keywords “API”, “library”, “framework”, or “in-
terface”. Therefore, it is not feasible to manually search all Stack
Overflow posts to discover API workaround posts, some automa-
tion must be used to simplify the task. An n-gram classification
approach was chosen for its comprehensibility and high classifica-
tion rate [11]. We found that unigrams and bigrams that contained
the words “workaround” or “hack” in our dataset were very rigid
and produced limited results when compared to trigrams. Using
unigrams and bigrams also provided too many posts unrelated to
the topic at hand. For example, the word “hack” appears in many
contexts unrelated to API workarounds; this provides many false
positives without the context provided by trigrams. Finally, we
settled on using trigrams after first attempting to use unigrams and
bigrams unsuccessfully.

In order to obtain a manageable number of posts for manual
examination, we followed the process outlined below:
Step 1: Preprocessing. Using the open source Python natural
language toolkit (NLTK) [2] we removed all punctuation and xml
markup and made all strings lowercase. We further preprocessed
the data by removing all stop-words (e.g., and, or, the) using NLTKs
predefined list of English stop-words.
Step 2: Topic filter.We filtered out all posts that did not contain
any one of the “api”, “library”, “framework”, or “interface” keywords.
Step 3: Trigram frequency. Using NLTK, we built a dataset of all
trigrams found in our topic-filtered dataset and ordered them by
frequency of occurrence.

Step 4: Selection of relevant trigrams. Based on our list of fre-
quent trigrams we manually selected trigrams that contained a
logical leap to posts relevant to API workarounds, and that had a fre-
quency higher than one and contained the keywords: “workaround”
or “hack”.
Step 5: Filter posts by trigram. Finally, we collected all posts in
the topic filtered list (obtained in Step 2) that contained instances of
the trigrams selected in Step 4. We manually selected 11 trigrams
in Step 5, for example: “workaround, could, use”. These 11 trigrams
were frequent and only accepted if they were logically sound to all
of the authors 1.

We obtained 1,846 posts by using the filtration steps outlined
above. Since the score of a Stack-Overflow post is meant to be a
marker of popularity and hence an indirect indicator of value to
Stack Overflow users, we chose to rank the posts by score. Finally,
we selected the top 400 scoring posts as a subset to use for our man-
ual study. We chose to use top scoring posts, instead of randomly
selecting posts, since high scoring posts are the most likely to have
an impact on users, and therefore give us insight on the types of
API workaround questions and answers that users consider valu-
able. We consider question and answer pairs as API workaround
inquiries.

3.2 Qualitative analysis of posts
Our goal is not to find the root causes of each of our selected Stack
Overflow posts. Instead, we aim to understand developers’ motiva-
tions when asking for API workarounds. Furthermore, we also seek
to understand what kind of answers are commonly accepted by API
users. Therefore, for each workaround-related post, we examine
the title, question post, accepted answer or highest rated answer, as
well as any comments related to the question or answer. Investigat-
ing an API workaround post is a non-trivial task, since each post
requires the investigator to understand the context, considerations,
and concerns of the API users.

In order to reach a generalizable understanding of APIworkarounds,
we followed a systematic process to analyze each question and an-
swer in our dataset. We chose to use open card sorting, a commonly
used sorting practice [37] that allows the sorting of posts into cate-
gories while also allowing the generation of the categories [55, 74].
More specifically, the authors of this paper performed the coding
process defined below:
Step 1: Deriving base coding. A sample of 40 posts (10% of our
final sample) was selected at random and given to all of the authors
to code to the best of their ability. No particular constraints were
set, and codes could be added at will. This step took a few days for
the coders to finish.
Step 2: Discussion after code derivation. After the authors fin-
ished independently deriving their base codes, a meeting was held
to discuss coding conflicts and reach consensus on a base coding
that could be used for the rest of the sample. The meeting took one
to two hours.
Step 3: Refining post coding. Each author independently coded
another 40 posts, after which we held another meeting to discuss
disagreements and refine any coding misunderstandings. Coding

1A complete list of the trigrams used to filter posts can be found in our replication
package https://github.com/senseconcordia/API-Workarounds.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Maxime Lamothe and Weiyi Shang

the posts took a few days for the coders to finish and the refinement
meeting took about an hour.
Step 3: Complete coding of posts.Using our refined coding, each
author independently coded the final 320 posts and revisited their
prior coding. We measured our inter-coder agreement (see Sec-
tion 3.3) after this step.
Step 5: Resolve disagreements. We discussed every conflict in
the coding results until a consensus was reached for each disagree-
ment. Conflicts were resolved by revisiting each issue together and
discussing the reasoning behind each author’s coding until a con-
sensus could be reached. Conflicts were resolved in three one-hour
conflict resolution meetings.

To encourage the replication of our results and allow further
studies related to API workarounds, we have made our compiled
Stack Overflow API workaround questions and answers data pub-
licly available as part of a replication package.

3.3 Measuring coder agreement in our
qualitative study

To ensure that the coding derived in Section 3.2 is reliable we must
have a quantitative evaluation of reliability, we chose to use Inter-
coder agreement, ametric that can be used as ameasure of reliability
for coding results [6, 32]. Coder agreement is important for trust
and reproducibility. Low agreement may lead to non-reproducible
results.

We used Krippendorff’s α [6, 31, 32] to measure the inter-coder
agreement of our qualitative study since it is a general and standard
reliability measure [23]. Krippendorff’s α can be used to determine
a quantitative agreement between coders of typically unstructured
data [32].

Krippendorff’s α provides a value between zero and one to in-
dicate the observed disagreement between coders. If coders agree
perfectly then α=1. In the case where coders present an agreement
equivalent to random chance then α=0. Therefore, reliable data is
represented as anα → 1, and should be far fromα=0. Krippendorff’s
α takes the form of:

α = 1 −
Do
De

where Do is the observed disagreement between coders and
De is the disagreement expected by chance. Details related to the
calculation of Krippendorff’s α can be found in [31].

Krippendorff’s α requires a single value to be assigned to each
coded item [32]. Since our coding schema allows posted answers to
be simultaneously coded into multiple categories, we must modify
the way we calculate Krippendorff’s α slightly. We consider each
category for each coded item as a separate coding unit. Coder
agreement is then considered on a per-unit basis, which allows us
to consider posts that have multiple coded categories. 2

3.4 Qualitative study results
A Krippendorff’s α ≥ 0.800 demonstrates reliable agreement [32].
As shown in Table 1 the Krippendorff’s α for our question cod-
ing is 0.848, and the Krippendorff’s α for our answer coding is

2The total frequencies for categorized answers exceeds the total number of posts since
posts can be placed into multiple categories (e.g. Not supported/Use another API).

Table 1: Qualitative study reliability coefficient (Krippen-
dorff’s α)

Krippendorff’s α
Question categories coding 0.848
Answer categories coding 0.810

0.810. Therefore, based on Krippendorff’s α the results of our
qualitative study are reliable.

The coding and categorization process described in Section 3.2,
allowed us to determine four general API workaround question
types and two general API workaround answer types used by API
users on Stack Overflow.

3.4.1 Why do API users ask for API workarounds?
Through our manual evaluation of Stack Overflow posts we un-
cover and categorize reasons why API developers request API
workarounds. Three of the four general API workaround question
types contain more specific types. All of the question categories
are detailed below and examples for each category can be found in
Table 2.
Help with API dependencies. Users sometimes seek help with
API dependencies, for example when two APIs have dependency
conflicts, users might ask if a replacement exists, or if there is a way
to work around the conflict. These inquiries can involve multiple
libraries and build systems. This category, while infrequent could
be used by API developers to determine potential compatibility
problems.
Missing desired functionality. API users can have broad expec-
tations for APIs. Users sometimes expect APIs to provide function-
ality that they believe should be provided by the API or that they
have seen in other APIs. API users request three general types of
functionality, access to extra data or information (Missing Data/in-
formation), new or missing features (Missing Feature), and they
sometimes also request another interface to deal with more or fewer
parameters (Missing Interface). Missing desired features are the
second most common question category in our dataset. Further-
more, they appear to present common answer patterns when they
require the implementation of a workaround.
Requesting an improvement to the API. API users do not al-
ways request new or missing functionality. There are cases where
users are aware of existing functionality but desire some improve-
ments. In some cases, the improvement is functional, like when a
user requests an extension point for existing functionality. In other
cases, the desired improvement is non-functional, like when a user
requests better performance or improved security.
Runtime problems while using the API. Runtime problems
present the most common API workaround question category. How-
ever, most runtime problems express themselves as general unex-
pected behavior. Unexpected behavior is a broad category that spans
from defects to ambiguous documentation. Unexpected behavior
questions present themselves when a user experiences behavior
that is unexpected to them and asks for a workaround to avoid the
APIs unexpected behavior. Any behavior that is unexpected by the
API user falls into this category, therefore it should be no surprise
that 10/13 “User is confused” answers are in response to unexpected
behavior questions. Some runtime problems are more specific and
can be narrowed down to backwards incompatibility. API version

When APIs are Intentionally Bypassed: An Exploratory Study of API Workarounds ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 2: Categories of questions derived from Stack Overflow posts on API workarounds

Question Type Quote Frequency
Help with API dependencies “I’m wanting to use the python-amazon-product-api wrapper to access the Amazon API

[...] Unfortunately it relies on lxml which is not supported on Google Appengine.”
10

Missing desired functionality 150
Data/information “In .NET Framework, we can use [...] to get the system directory [...], but that property

does not exist in the current versions of .NET Standard or .NET Core. Is there a way to
get that folder in a .NET Standard”

21

Feature “Is there an equivalent to getLineNumber() for Streams in Java 8? I want to search for a
word in a textfile and return the line number as Integer.”

121

Interface “Is this somehow not what the API is meant for? Anyone know a workaround, or some
kind of extra parameter(s) I could send to make it work?”

8

Requesting an improvement to the API 28
Functional “Is there a better way to do this? I wish I could add my mock instances to the Laravel IoC

container and let it create the commands to test with everything properly set. I’m afraid
my unit tests will break easily with newer Laravel versions”

19

Non-Functional “But I’m curious if anyone else knows of [a more] efficient way to to a bulk insert using
EF Code First?”

9

Runtime problems while using the API 159
Backwards incompatibility “All this works great in MVC3 (test again today, it really works) but it seems that the

ExecuteCore in BaseController is not fired any more in MVC 4 beta.”
20

Unexpected behavior “Previously, I have a set of Google Drive API code, which works fine in the following
scenarios [...] Few days ago, I encounter scenario 2 no longer work [...], whereas other
scenarios still work without problem.”

139

Unusable 53
Useless (Unrelated to API workarounds) 53

issues and the migration between API versions is a well-known
problem that has been studied extensively [12, 28–30, 33, 45, 49].✄
✂

�
✁

API workarounds contain valuable knowledge for API developers.
The workarounds indicate API users’ needs, such as adding fea-
tures, accessing information, and bypassing runtime problems.

3.4.2 How are API workaround inquiries answered?
Through our manual evaluation of Stack Overflow posts we also un-
cover and categorize how API developers answer API workaround
inquiries. We observed three main categories of answers to API
workaround questions. These three main categories can be further
divided into a total of eight API workaround answer categories.
The answer categories were manually determined as shown in Sec-
tion 3.2 using the post selected as an answer by the original poster.
If no answer had been selected by the questions author, we selected
the highest scoring answer as the best answer. Furthermore, the
total frequency of answers is greater than 400 since answer posts
can fit into multiple answer categories.
Already supported by the API. 28.9% (111/384) of the useful an-
swers we extracted suggested that the posted API workaround
inquiry was already supported by the API in some way. In most
cases the user had to make a small adjustment to their implementa-
tion. In 24 cases, the API could be used “as is” and addresses the
inquiry without any modification. Finally, in nine cases, the inquiry
could be answered by using the API, but the user had to change
their current implementation to fit the API requirements.
Not currently supported by the API. In most cases, API user
inquiries present a need that cannot currently be addressed with
support from the API. In such cases, the API users will have to
produce some extra code to implement a workaround. Suggested

workarounds vary in scope but follow general patterns to add fea-
tures, access information, and work around runtime problems. In
80 cases, accepted answer posts suggest using another API to ad-
dress the API user inquiry. In some cases, a solution to the inquiry
is available or will be available soon, but only in the form of an
update or patch. In 38 cases the inquiry is simply not supported
by the API by design. Finally, in three cases an answer could be
provided, however the posted answer did not recommend using a
workaround.
User is confused. In 13 cases we encountered answers that sug-
gested that the user was either misusing an API or following bad
practices that were hindering their progress. As previously men-
tioned, most (10) of these users believed that theywere experiencing
unexpected behavior, when in fact the behavior should have been
expected given their misuse of an API.

3.4.3 Unusable inquiries.
Due to the nature of the heuristics we used to filter the Stack Over-
flow post dataset [1], we expected some false positives to make it
through. Therefore, as part of our coding process we also catego-
rized any posts we deemed to be unrelated to API workarounds as
useless. 53 posts out of 400 were ultimately identified as unrelated
to API workarounds. Many of these posts were either asking for
opinions on APIs or focused on tools. Although these inquiries can
be useful to the community, we ultimately determined that they
did not provide additional knowledge to help understand why API
users seek workarounds, or the kinds of workarounds they use.
Furthermore, since we separated the coding of questions from their
answers this allowed us to consider the knowledge imparted by
a question even if no answer existed at the time of our study (20
cases).

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Maxime Lamothe and Weiyi Shang

Table 3: Categories of answers derived from Stack Overflow posts on API workarounds

Answer Type Quote Frequency
Already supported by the API 111

Change your current implementation “I have found the solution. I switched the direction of this mapping” 9
Use API as is “As others have said, there’s nothing wrong with using [...]” 24
You will need small adjustments “The simplest way is to just append [...] to the end of your command” 78

Not currently supported by the API 260
Need to implement a workaround “One possible workaround is to write "setter/getter-like" methods, that uses a singleton

to save the variables [...] or — of course — write a custom class [...]”
107

Not supported/No solution “The reason you can’t do this is because it is specifically forbidden in the C♯ language
specification”

38

Not recommended “This is asserted as "by design" [...]. Consider a post-processing step that hacks the paths
the way you want them.”

3

Use another API “Do you absolutely have to use java.util.Date? I would thoroughly recommend that you
use Joda Time or the java.time package from Java 8 instead.”

80

Wait for/apply new version/patch “I think you are experiencing a likely symptom of [...]. This bug exists in 3.2 and higher
and was only fixed recently (4.2).”

32

User is confused “Don’t hack something together using JavaScript, as soon as Twitter makes an update to
their widget, that’s it, you’re screwed. Use a server-side language and do it properly as
per their documentation.”

13

Unusable 73
No answer 20
Useless (Unrelated to API workarounds) 53✄

✂
�
✁

Addressing the needs of API users often requires producing
some extra code to implement a workaround. The suggested
workarounds vary in scope but follow general patterns.

4 PATTERNS FOR IMPLEMENTING API
WORKAROUNDS

Section 3 shows that a considerable number of API workarounds
require extra implementation from the API users. Therefore, we
would like to identify workaround implementation patterns to show
API developers how their APIs are used in unexpected ways. These
patterns can then be used to inform the future API development
decisions of API developers.

We read every post in the “need to implement a workaround”
API answer category from Table 3 and found three generalized
API workaround patterns. The three patterns were manually deter-
mined by the authors from recurring similarities in workaround
answers. Similar questions were amalgamated into the general pat-
terns found in this section. More patterns could likely be extracted
from the data; however, our goal was not to extract every pos-
sible pattern, but to conduct an exploratory study of likely API
workarounds. Therefore, we present three patterns that were manu-
ally developed based on real examples of API workaround requests
by the authors of this paper. These three patterns are not an ex-
haustive list of patterns that could be derived from our dataset. For
each workaround pattern we provide a description of the pattern,
the motivation of the API users that implement such a workaround,
and more importantly, the benefit of knowing such patterns for API
developers. In addition, we present a code example of each pattern
(presented in Table 4).

Pattern 1: Functionality extension
Description: This pattern presents itself when API users extends
the existing behavior of an API to add functionality that does not
currently exist as part of the API, or to modify existing behavior to
work as they desire.
Example: The example in Table 4 shows an extension of the Hiber-
nate ORM API to support functionality for Postgres databases, that
require an unquoted primary key column name. Standard behavior
is therefore modified to unquote the identifier to work around the
different behavior required by Postgres.
Motivation: This pattern appears when users desire an unavail-
able functionality from an API. This workaround pattern allows
API users to circumvent existing functionality without remov-
ing or breaking any of the existing functionality. This allows API
users to keep all existing API functionality and have their desired
workaround included as well.
Detection strategy: To detect this pattern we attempt to determine
the frequency of API class extensions, as well as the frequency
of method overrides. We can compare this data to a baseline of
non-extended API class invocations, and non-override API method
invocations. Abstract classes should be ignored since they are de-
signed to allow flexibility for the user to create whatever they want

The intuition behind this pattern is that if a class or method is
more often extended or overridden than it is invoked, then the func-
tionality of the class or method is not offered in the way most often
desired by the API users. Therefore, the data for this pattern should
present cases of functionality improvements for API developers.
Clone detection approaches can also be used to check if common
functionality can be found between projects.
Benefit to API developers: Instances of this pattern can present
API developers with real scenarios for desirable features, and hints
to implement them, without direct communication with users.

When APIs are Intentionally Bypassed: An Exploratory Study of API Workarounds ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Therefore, API developers can use instances of this pattern to de-
termine what desirable functionality is missing from their API.

Pattern 2: Deep copy
Description: This pattern presents itself when a user attempts to
copy API data to use a copy locally rather than directly use the API
functionality. This can be done to add or modify functionality or to
work around a software defect.
Example: The Jackson API includes parsers for several data for-
mats (ex. Avro, CSV, XML, YAML). However, it does not contain a
parser for BSON or Rison, therefore users must create their own
parser to support these data formats by providing a new interface
that copies existing functionality but provides Rison or BSON com-
patible outputs. The example presented in Table 4 shows a method
that access existing information in the API modifies it and provides
the information through the usual API.
Motivation: This pattern specifically looks at cases where a user
wants to use the data provided by the API rather than the methods
provided by the API. In this pattern, API users extract internal
API information to add or modify API functionality in their appli-
cation. This allows the users to maintain complete control of the
functionality in their application while relying only on the API’s
data.
Detection strategy: To detect this pattern in Java applications we
can look at the API fields and API getter method usage in GitHub
projects. We believe that looking at fields and getters that are often
called by API users can give insight into the usage patterns of these
API users. This insight coupled with an understanding of the API
architecture can explain where new interfaces could be created. We
also look at classes that use a high number of distinct fields and
getters to determine how and why users are using the API data.
Benefit to API developers: This pattern tells API developers that
their API contains desirable data, but that functionality to use this
data is missing or defective. Therefore, interfaces should be modi-
fied or added to provide desired functionality.

Pattern 3: Multi-version
Description: This pattern manifests when API users attempt to use
two or more versions of an API to work around a runtime problem
(e.g., bug) or introduce functionality found in separate API versions.
Example: The Log4j and Log4j2 APIs allow the user to set logger
context, however some early versions of the Log4j2 API experienced
some issues with exception logging. By using a classLoader and a
JAR of Log4j it was possible to dynamically load and use the log4j
logger context to circumvent exception logging issues experienced
by Log4j2. This is presented in the example in Table 4 3

Motivation:Many workarounds are requested to deal with defects
in APIs, we found a wide range of solutions for this problem in
our Stack Overflow dataset. However, we found some cases where
users are encouraged to use an older or newer version of the API
to resolve an issue (i.e. bug).
Detection strategy: To detect this pattern we can attempt to de-
termine when users are attempting to use two or more versions
of an API in a given project. In the case of Java, it is not possible

3This problem has since been resolved in Log4j2, however one of the user projects we
encountered still maintains a workaround for this issue for unknown reasons.

to statically load two versions of the same library since the class
paths would conflict. However, it is possible to dynamically load
two (or more) JAR files using class loaders at runtime and then
use the functionality from any or all of the loaded JARs as desired.
We can therefore attempt to determine instances of this pattern by
detecting when a given class or method shows support for more
than one version of an API.

By storing various versions of each library (in JAR format), and
by looking at all API method invocations for each project we can
determine multiple version usage. Most APIs keep functionality
the same across multiple versions, however some APIs will change.
Therefore, if we detect that a method invocation maps to a spe-
cific API version, but the rest of the project maps to different API
versions, we can flag this API method invocation as suspicious.
Benefit to API developers: Using a different version of an API is
also sometimes suggested as a solution for missing desired func-
tionality that existed in an older version of an API. Therefore, API
developers can use instances of this pattern to detect potential de-
fects (and their solutions), as well as desirable functionality, directly
from user projects.

5 REPORTING REAL-LIFE API
WORKAROUNDS TO DEVELOPERS

In this section we present a study conducted to detect the exis-
tence of API workaround patterns in real-life projects that use the
APIs. Furthermore, we discuss the results of our study and the API
developer responses to the reported patterns.

5.1 Identifying API workarounds in real-life
projects

Since our generalized API workaround patterns are based on data
collected from Stack Overflow, we do not have direct evidence that
these patterns can readily be found in real-life software projects.
Therefore, we produce an experiment to confirm the existence of
these patterns in open source projects.

Our detection strategies rely on parsing API source code and
extracting binding information for fields, methods and classes in the
API with the help of the Java abstract syntax tree parser [25] and
symbolic link resolver JavaParser [25]. Once an API has been parsed,
any number of user projects can be targeted to detect the occurrence
of workaround patterns inside those projects. If a workaround pat-
tern is detected, we manually observe the identified candidate and
report the candidate as a possible improvement to API developers.

5.1.1 Subject APIs.
We selected five open source APIs, all of which have their source
code available on GitHub and compiled JARs available in Maven
repositories. We selected APIs programmed in Java to limit the
scope of our experiments. However, it should be noted that our gen-
eralized patterns are language agnostic and were generalized from
Stack Overflow posts without filtering by programming language.
All of the chosen APIs are popular open source APIs that have been
used by hundreds of public GitHub projects. The popularity of the
APIs allows us to obtain varied uses of the APIs.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Maxime Lamothe and Weiyi Shang

Table 4: API workaround patterns and corresponding examples

Pattern name Example
Functionality extension

Deep copy

Keep interface the same, but modify existing information

Multi-version

Url for Log4j config

Dynamically set/load Log4j config rather than use current Log4j2 config

The code presented in this table has been edited due to space constraints.

When APIs are Intentionally Bypassed: An Exploratory Study of API Workarounds ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Guava (394 user projects) Google’s Guava API is an open source set
of commonly used Java libraries. The API includes APIs for con-
currency, primitives, hashing, and many other functionalities [21].
Prior research on 10,000 GitHub projects has shown that Google
Guava was the 8th most popular Java library in 2013 [66]. We tar-
geted 20 different versions of the Guava API, from version 20.0 to
version 27.1.
Hibernate (642 user projects) Hibernate is a free and open source
framework that provides mapping from Java classes to database
tables as well as abstracted data querying [53]. We targeted all 12
of the minor releases of the Hibernate API that were available on
the maven central repository, from version 3.3.2 to version 5.4.2.
Jackson (588 user projects) The Jackson Core is an open source
Java API that provides a JSON parser/generator with other data
encodings, such as CSV, XML, YAML and more [24]. We targeted all
10 of the minor releases of the Jackson API that were available on
the maven central repository, from version 2.0.6 to version 2.9.9.
JUnit (1,000 user projects) JUnit is an open source unit testing frame-
work for Java [26]. Prior research on 10,000 GitHub projects has
shown that JUnit was the most popular Java library in 2013 [66].
We targeted 20 different versions of the JUnit API, from version 3.7
to version 4.12.
Log4j (475 user projects) Apache Log4j is an open source Java log-
ging framework [5]. As of the writing of this paper, over 4,260
maven artifacts have the Apache Log4j Core as a direct depen-
dency [41]. We targeted 20 different versions of the Log4j API, from
version 2.0.1 to 2.11.2.

5.1.2 API user projects.
The API user projects chosen for this paper were all open source
projects hosted on GitHub and selected based on their use of the
five Java APIs we selected. We first searched all of GitHub for
README files that mention the name of our target APIs. There
is no current tagging system on GitHub to search for APIs used
by GitHub projects. Therefore, we rely on heuristics to determine
if a project uses one of our five target APIs. We found that if a
project README mentions an API by name, it is likely that the
project will in turn use this API. Furthermore, we used project
“stars” as a metric for popularity of a project. Although GitHub
“stars” are not an indication of quality, it is an indirect measure of
popularity. If a project is more popular, it is possible that it will
have a larger impact, and the information obtained from examining
this project should therefore be more important to API developers.
The minimum project size was set at 5MB in order to reduce the
number of dummy projects that might contain no code. Using these
filtration criteria, we either selected all of the projects that met
our criteria or the top 1,000 starred projects for each target API,
whichever came first. The number of projects used for each of our
selected APIs can be found in Section 5.1.1.

Each of these projects was used to attempt to map binding in-
formation obtained from the API source code to API uses in the
user projects. Furthermore, we also used the JARs for each API to
determine version specific binding information. We applied our
pattern detection strategies to determine if one or more of our three
patterns are present in a user project.

5.1.3 Detecting patterns.
To help detect the API workaround patterns presented in Section 4,

we produced research scripts and prototype tools based on the
detection strategies presented in Section 4. The prototype tools and
scripts used to aid with pattern detection are publicly available 4.

Since API developers are most likely to be interested in active
API workarounds, we concentrate on the latest releases of API
user projects. By using the latest releases of user projects we can
keep our results relevant to API developers, circumvent a number of
build problems related to older versions [61], and reduce the pattern
detection time. Furthermore, since JavaParser [25] does not require
building projects to obtain an AST or to build symbolic links, we
can parse API user projects without the need to worry about build
issues [61]. As a first detection step, we leverage JavaParser [25]
to extract API class names, API method declarations, API field
declarations, and specific API methods that contain the keyword
‘get’. This information can later be used to map API declarations
to API user invocations by further leveraging JavaParser [25] to
obtain code bindings in user projects.
Functionality extension: To detect the Functionality extension
pattern, we use the binding information obtained through Java-
Parser [25] to extract all API method overrides, API method invoca-
tions, API class extensions, and API class invocations for all of the
API user projects in our sample. We then build a frequency map of
all of these, to determine which classes are more often extended
rather than invoked and which methods are most often overridden
rather than invoked. Based on this data, we observe the items with
the highest extend:invoke and override:invoke ratios.
Deep copy: To detect the Deep copy pattern we use JavaParser [25]
to extract API field invocations and API getter method invocations
from API user projects. We keep track of how many of these items
are invoked in a given API user class, and the global invocation
patterns across all API user applications. We then consider API user
classes that use the most API field and API getter invocations as
potential Deep copy candidates.
Multi-version: We conduct heuristic analysis on the JAR releases
of our target APIs to determine links between target APIs and
API user applications. By using these links, we can heuristically
determine which API versions are compatible with a given user
application. Through the heuristically determined links between
API JARs and API user applications, we can determine which user
applications would require more than one version of an API to
support all of their API calls. Using this information we can flag
API user applications that require multiple versions of an API.

Using our detection strategies, we produced lists of API user code
instances that were likely to contain API workaround patterns. We
manually verified the top 10 most likely workaround candidates
for each API for each pattern, giving us a total of 150 manually
verified potential API workaround pattern instances. Any candidate
deemed an API workaround instance, after manual verification, was
reformulated by the authors as an API feature request and sent to
API developers, either through GitHub or their forums. We detect
API workaround patterns in API user applications of varied matu-
rity, without knowing which version of the API is used a priory.
Therefore, we do not originally know if any of the workarounds
we find in user applications have since been used as actual im-
provements and bug fixes in more recent versions of the API. If

4https://github.com/senseconcordia/API-Workarounds

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Maxime Lamothe and Weiyi Shang

we detect a workaround in an old user project and later determine
that the workaround has been integrated into the API, we therefore
consider this an indication that API developers could benefit from
knowledge of API user workarounds.

5.2 Results and discussion
In this section we breakdown our manual observations of 150 po-
tential API workarounds that were detected using automated ap-
proaches.We first manually examine all the 150 instances to confirm
whether they are indeed correspond to workarounds. We find that
80 out of the 150 (53%) instances are true instances of workarounds.
We manually check the reasons of the instances that are detected
by our patterns but not workarounds. We find that there is a single
non-workaround instance of Functionality extension pattern. The
pattern instance was a custom extension of a Hibernate exception
and therefore considered normal usage of the API. We find 20 non-
workaround Deep copy pattern instances that were exclusively for
Jackson and JUnit. In those instances, the top fields and getters
copied by API users to ease their testing code, i.e., JUnit. Finally, all
of the detected instances of Multi-version patterns belong to JUnit,
Guava, and Log4j, since the Hibernate and Jackson APIs did not
present any instances of the pattern. However, the majority (49 out
of 50) of our Multi-version pattern instances appear to be defensive
coding rather than pure workarounds.

To avoid requesting too much information from the developers
of the studied subjects, we strategically pick manually verified true
instances to submit feature requests. In particular, we concentrate
on more complex functionality addition or modification, and defect
workarounds that could clearly be discerned by the authors.

5.2.1 Functionality extension:
During our manual observation we were able to extract nine Func-
tionality extension API workarounds from the selected user systems.
By searching through forums and patch notes, we were able to find
that three of the Functionality extensions did not exist in the APIs
when the user projects created workarounds, but they had already
been incorporated into the APIs when we searched their forums.
This confirms that our patterns are indeed detecting functionality
that was missing from the APIs.

In two cases, we were able to find currently existing pull requests
that are in the process of being integrated into the APIs. For example,
pull requests are in discussion for SQLite support in Hibernate and
users have posted that they “Would love to see official SQLite support
in Hibernate”. Therefore, in five cases, desired functionality had
been deemed valuable by API developers and was either integrated
into the APIs or is currently in the process of being added.

In two cases, we found two existing but unfulfilled feature re-
quest posts in the API forums or on Stack Overflow. In one case, a
Stack Overflow post (post id: 2308543) details the unexpected be-
havior and the desire for this feature. This shows a real user desire
for this feature. However, the feature has still not been added.

In two cases we created feature requests for missing functionality.
As of the writing of this paper, one feature request is in the APIs
feature request queue. The other feature has been acknowledged
by the API developers as desirable by users, but they do not have
the resources to maintain that functionality at this time.

5.2.2 Deep copy:
Wewere able to extract two interesting Deep copy API workarounds
from our dataset. We created feature requests for new function-
ality to improve the APIs. We received positive responses to the
functionality that was proposed. When we requested a BSON for-
mat addition, one API developer replied that they did not want to
support the functionality, but that “[...] BSON-backed streaming api
implementation makes sense (dataformat module) – this is what is
used to support dozen other formats.”. Furthermore, they pointed us
in the direction of an existing third-party package that could supply
this functionality. This shows that the functionality was indeed
desirable enough for someone to create a third-party library for it.
This therefore confirms that the detected workaround pattern con-
tained functionality that was not provided by the API. Furthermore,
the third-party library with this functionality shows the value of
our reported workaround functionality.

5.2.3 Multi-version:
We were able to find 50 cases where multiple versions of APIs were
used. However, only one case was providing a workaround for
missing functionality. We examined this case in detail and found
that an issue did exist with the API. However, the issue had been
fixed by a patch soon after the issue was introduced. The fix shows
that workarounds would potentially assist developers in identifying
problems with their APIs used in real-life by API users.

In the 49 other cases, after careful examination of the API user
code and documentation, we were able to determine that API users
sometimes code defensively to allow their users to use a wide range
of compatible libraries. In those cases, API users will have a direct
dependency on a specific version on an API, which they will bundle
with their project. However, they will in turn allow their users to
use a range of different API versions, which will be dynamically
loaded and override default behavior to provide compatibility with
newer API versions. If API developers had knowledge on which
API combinations users most often employ, this could direct their
testing efforts to maintain compatibility between API versions.

5.2.4 Unnecessary workarounds:
User code can sometimes present an API workaround pattern with
code that simply emulates existing functionality. We found three
instances of user code that presented as workaround patterns but
could have been implemented using existing API functionality. In
these cases, perhaps a lack of understanding of the APIs functional-
ity by the API users is at fault. This could be mitigated by improving
API documentation and examples. API developers can use this infor-
mation to efficiently spend time on APIs that have documentation
issues and generate examples specifically for those APIs.

Based on the responses to API workaround feature requests,
both already existing and those we created, we can confirm that
API workaround patterns detected in API user projects can provide
valuable knowledge to API developers 5. Furthermore, we can con-
firm that the three patterns presented in Section 4 of this paper do
exist in API user projects, and that they are used to provide missing
functionality and work around unexpected behavior.

5A list of detected patterns and feature requests is available in our replication package.

When APIs are Intentionally Bypassed: An Exploratory Study of API Workarounds ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

6 RELATEDWORK
In this section we discuss related research in the field of APIs. We
specifically concentrate on prior work based on API usage patterns,
API misuse, and using Stack Overflow as an API resource.
API usage. API usage patterns have been used in prior work
to understand how APIs evolve [38], to detect API compatibil-
ity issues [57], for API migration [27, 33, 43], code recommenda-
tion [42, 44] and more. In this paper we specifically concentrate on
usage that would not typically be expected from API developers
(i.e. workarounds). API usage patterns can be extracted from source
code [27, 33, 38, 42–44, 57], but they can also be extracted from code
examples [19, 71]. In this paper we use a mixture of both approaches
by extracting and generalizing the usage of three API workaround
patterns from code examples taken from Stack Overflow to later
detect instance of these patterns in source code.
API misuse. API misuses can be characterized by their violation
of an APIs constraints [4]. Misusing APIs can lead to an increase in
software security vulnerabilities and bugs [3, 20, 40]. Prior work has
concentrated on identifying and detecting API misuses [4, 34, 36,
40, 46, 59, 65, 67]. API misuse detection tools often rely on frequent
usage patterns to detect API uses that deviate from the norm, but
they can also rely on Mutation analysis [67].

The API workaround inquiries and patterns deliberated in this
paper are instances of unconventional API usage. API users some-
times seek to modify or work around the current implementation of
an API. This paper concentrates on constructive workarounds that
could be seen as improvements to the API. However, there exist
non-constructive ways to use APIs. These usage patterns are known
as API misuses. API misuses can be considered as unintentional
alternate uses of APIs, meanwhile API workarounds are intentional
alternate uses of APIs.
Stack Overflow as an API resource. Stack Overflow has been
used as a source of information for several prior works on APIs [19,
35, 64, 71]. Stack Overflow has been used for API topics such as how
API changes trigger discussions [35, 63], improving API documen-
tation [47, 58, 60], understanding the concerns of developers [62],
API recommendation [48, 52], indexing API information [69], and
API deprecation [73].

However, Stack Overflow is not the only online community that
has been used as a source of data for API research. Other forums
have also been used to develop tools that could find negative de-
veloper sentiments and highlight, search, and estimate API “hot
topics” [72]. Online forums have also been used to develop auto-
matic code critics that can inform API users of API usage rules
and support API usage [56]. We similarly use online information
from Stack Overflow to understand how developers use APIs. How-
ever, our work differs in scope since we wish to understand how
and why API users seek to work around missing or problematic
API functionality. We then use this information to generate API
workaround patterns that can be used by API developers to search
for new and desired features to add to their API.

7 THREATS TO VALIDITY
Construct validity. We do not claim to have found all inquiries
pertaining to API workarounds. However, we believe that the sam-
ple collected is adequate to produce an exploratory study into the

problem at hand. Although we diligently attempted to confirm the
detected instances of implementation patterns for API workarounds
by searching application documentation and online forums, and
we reported issues to API developers, it is still possible that the
patterns detected in user applications were misidentified as API
workarounds. We do not claim to be experts for any of the user ap-
plications studied nor for any of the APIs selected. We do not claim
to have found or reported all existing workarounds in the stud-
ied systems. However, investigations into the instances detected
appears to confirm the existence and usefulness of the patterns.
Future empirical and user studies can be done to complement our
study and may bring additional insight to our results.
External validity. Since the API workaround pattern instances in
this study were detected in Java APIs, it is possible that the findings
in this paper do not generalize to other programming languages.
However, while the strategies presented in this paper were tested
on five Java APIs, the strategies were developed based on language
agnostic Stack Overflow posts and should therefore apply to a range
of programming languages (e.g., C#).
Internal validity. The API workaround inquiry categories and
patterns presented in this paper might not be fully indicative of API
workarounds and instead reflect internal bias. We attempted to miti-
gate these threats by having the authors of this paper independently
label and reach a consensus on the categorization of Stack Over-
flow posts and the implementation patterns extracted from these
posts. Our manual observation of 400 Stack Overflow posts may
also present internal bias, future studies involving more posts can
complement our results. However, we reported API workaround
patterns to API developers and received feedback that suggests that
the workarounds we detected are actual workarounds and should
be considered valuable for future fixes or extensions to the APIs.

8 CONCLUSION
In this paper we conduct an exploratory study on API workarounds.
By studying inquiries from Stack Overflow, we find that API users
seek API workarounds to add desired functionality, improve APIs,
and resolve unexpected API behavior. Furthermore, we show that
many API workarounds require extra code from API users to im-
plement workarounds. Using workaround implementations sug-
gested in Stack Overflow answers, we extract three generalized API
workaround patterns that are implemented by API users to deal
with missing API features and unexpected API behavior. We find
real-life examples of these patterns in open source projects and
report instances of these patterns to API developers. Without our
findings, these patterns might be misidentified as general develop-
ment and developers might ignore their unique characteristics. We
find that API developers consider these workaround instances as
real issues, and either add them to their issue tracker, or encour-
age pull requests to remedy them. Our paper makes the following
contributions:

(1) To the best of our knowledge, we are the first to study in-
quiries that concern API workarounds.

(2) We introduce and confirm the existence of three general
implementation patterns for API workarounds.

(3) We determine the usefulness of these patterns to practition-
ers through their adoption into API code bases.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Maxime Lamothe and Weiyi Shang

REFERENCES
[1] [n.d.]. Stack Exchange Data Dump : Stack Exchange, Inc. : Free Download,

Borrow, and Streaming. https://archive.org/details/stackexchange
[2] 2019. https://www.nltk.org/
[3] S Amann, S Nadi, H A Nguyen, T N Nguyen, and M Mezini. 2016. MUBench: A

Benchmark for API-Misuse Detectors. In 2016 IEEE/ACM 13th Working Conference
on Mining Software Repositories (MSR). 464–467.

[4] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira Mezini.
2019. Investigating Next Steps in Static API misuse Detection. In Proceedings of
the 16th International Conference on Mining Software Repositories (MSR 19). IEEE
Press, Piscataway, NJ, USA, 265–275.

[5] Apache. 2019. Apache/Log4j. https://github.com/apache/logging-log4j2
[6] Ron Artstein and Massimo Poesio. 2008. Inter-Coder Agreement for Computa-

tional Linguistics. Computational Linguistics 34, 4 (2008), 555–596.
[7] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Se-

bastiano Panichella. 2015. How the Apache Community Upgrades Dependencies:
An Evolutionary Study. Empirical Softw. Engg. 20, 5 (Oct. 2015), 1275–1317.

[8] Amine Benelallam, Nicolas Harrand, César Soto-Valero, Benoit Baudry, and
Olivier Barais. 2019. The Maven Dependency Graph: A Temporal Graph-based
Representation of Maven Central. In Proceedings of the 16th International Confer-
ence on Mining Software Repositories (MSR ’19). IEEE Press, Piscataway, NJ, USA,
344–348.

[9] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.
How to Break an API: Cost Negotiation and Community Values in Three Soft-
ware Ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). ACM, New York,
NY, USA, 109–120.

[10] A. Brito, L. Xavier, A. Hora, andM. T. Valente. 2018. Why and how Java developers
break APIs. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). 255–265.

[11] William B. Cavnar and JohnM. Trenkle. 1994. N-Gram-Based Text Categorization.
In In Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and
Information Retrieval. 161–175.

[12] Bradley E. Cossette and Robert J. Walker. 2012. Seeking the Ground Truth:
A Retroactive Study on the Evolution and Migration of Software Libraries. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering (FSE ’12). ACM, New York, NY, USA, Article 55, 11 pages.

[13] Barthélémy Dagenais and Martin P. Robillard. 2009. SemDiff: Analysis and
recommendation support for API evolution. Proceedings - International Conference
on Software Engineering (2009), 599–602.

[14] Barthélémy Dagenais and Martin P. Robillard. 2010. Creating and Evolving
Developer Documentation: Understanding the Decisions of Open Source Con-
tributors. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE ’10). ACM, New York, NY, USA,
127–136.

[15] Barthélémy Dagenais and Martin P. Robillard. 2011. Recommending Adaptive
Changes for Framework Evolution. ACM Transactions on Software Engineering
and Methodology 20, 4 (2011), 1–35.

[16] Barthelemy Dagenais and Martin P. Robillard. 2012. Recovering traceability links
between an API and its learning resources. 2012 34th International Conference on
Software Engineering (ICSE) (2012).

[17] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2019. An empirical compar-
ison of dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering 24, 1 (01 Feb 2019), 381–416.

[18] Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring.
Journal of Software Maintenance and Evolution: Research and Practice 18, 2 (2006),
83–107.

[19] Glassman E., Zhang T., Hartmann B., and Kim M. 2018. Visualizing API Usage
Examples at Scale. Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems - CHI 2018 (2018).

[20] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013.
An Empirical Study of Cryptographic Misuse in Android Applications. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security (CCS ’13). ACM, New York, NY, USA, 73–84.

[21] Google. 2019. google/guava. https://github.com/google/guava
[22] David Haney. 2016. NPM and left-pad: Have We Forgotten How To Pro-

gram. https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-
program

[23] Andrew F. Hayes and Klaus Krippendorff. 2007. Answering the Call for a Standard
Reliability Measure for Coding Data. Communication Methods and Measures 1, 1
(2007), 77–89.

[24] Jackson. 2019. FasterXML/Jackson. https://github.com/FasterXML/jackson
[25] JavaParser. 2019. JavaParser. https://javaparser.org/
[26] JUnit. 2019. Junit. https://junit.org/junit4
[27] Miryung Kim. 2013. LASE: Locating and Applying Systematic Edits by Learning

from Examples. ICSE (2013), 502–511.
[28] Miryung Kim, David Notkin, and Dan Grossman. 2007. Automatic inference of

structural changes for matching across program versions. Proceedings - Interna-
tional Conference on Software Engineering (2007), 333–342.

[29] Miryung Kim, David Notkin, and Dan Grossman. 2007. Automatic Inference of
Structural Changes for Matching Across Program Versions. In Proceedings of the
29th International Conference on Software Engineering (ICSE ’07). IEEE Computer
Society, Washington, DC, USA, 333–343.

[30] Sunghun Kim, Kai Pan, and E. James Whitehead. 2005. When functions change
their names: Automatic detection of origin relationships. Proceedings - Working
Conference on Reverse Engineering, WCRE 2005 (2005), 143–154.

[31] Klaus Krippendorff. 2011. Computing Krippendorffs Alpha Reliability. University
of Pennsylvania Scholarly Commons (Jan 2011).

[32] Klaus H. Krippendorff. 2013. Content Analysis - 3rd Edition: an Introduction to Its
Methodology. SAGE Publications, Inc.

[33] M. Lamothe and W. Shang. 2018. Exploring the Use of Automated API Migrat-
ing Techniques in Practice: An Experience Report on Android. MSR ’18: 15th
International Conference on Mining Software Repositories (2018).

[34] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: Automatically Extracting
Implicit Programming Rules and Detecting Violations in Large Software Code.
In Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE-13). ACM, New York, NY, USA, 306–315.

[35] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Denys Poshyvanyk. 2014. How do API changes trigger stack overflow
discussions? a study on the Android SDK. Proceedings of the 22nd International
Conference on Program Comprehension - ICPC 2014 (2014).

[36] Christian Lindig. 2015. Chapter 2 - Mining Patterns and Violations Using Concept
Analysis. In The Art and Science of Analyzing Software Data, Christian Bird, Tim
Menzies, and Thomas Zimmermann (Eds.). Morgan Kaufmann, Boston, 17 – 38.

[37] David Lo, Nachiappan Nagappan, and Thomas Zimmermann. 2015. How Practi-
tioners Perceive the Relevance of Software Engineering Research. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2015). ACM, New York, NY, USA, 415–425.

[38] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An empirical study of
API stability and adoption in the android ecosystem. IEEE International Conference
on Software Maintenance, ICSM (2013), 70–79.

[39] Tyler Mcdonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of
API Stability and Adoption in the Android Ecosystem. 2013 IEEE International
Conference on Software Maintenance (2013).

[40] Martin Monperrus and Mira Mezini. 2013. Detecting Missing Method Calls As
Violations of the Majority Rule. ACM Trans. Softw. Eng. Methodol. 22, 1, Article 7
(March 2013), 25 pages.

[41] MVN. 2019. Apache/Log4j. https://mvnrepository.com/artifact/org.apache.
logging.log4j/log4j-core

[42] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,
Eli Rademacher, Tien N. Nguyen, and DannyDig. 2016. API code recommendation
using statistical learning from fine-grained changes. Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering -
FSE 2016 i (2016), 511–522.

[43] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson Jr., Anh Tuan Nguyen,
Miryung Kim, and Tien N Nguyen. 2010. A Graph-based Approach to API Usage
Adaptation. SIGPLAN Not. 45, 10 (oct 2010), 302–321.

[44] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas
Degueule, and Massimiliano Di Penta. 2019. FOCUS: A Recommender System
for Mining API Function Calls and Usage Patterns. In Proceedings of the 41st In-
ternational Conference on Software Engineering (ICSE ’19). IEEE Press, Piscataway,
NJ, USA, 1050–1060.

[45] Trong Duc Nguyen, Anh Tuan Nguyen, and Tien N. Nguyen. 2016. Mapping
API Elements for Code Migration with Vector Representations. In Proceedings of
the 38th International Conference on Software Engineering Companion (ICSE ’16).
ACM, New York, NY, USA, 756–758.

[46] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and
Tien N. Nguyen. 2009. Graph-based Mining of Multiple Object Usage Patterns.
In Proceedings of the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC/FSE ’09). ACM, New York, NY, USA, 383–392.

[47] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. 2012.
Crowd documentation: Exploring the coverage and the dynamics of API discus-
sions on Stack Overflow. Georgia Tech Technical Report (2012), 1–11.

[48] Hung Phan, Hoan Anh Nguyen, Ngoc M. Tran, Linh H. Truong, Anh Tuan
Nguyen, and Tien N. Nguyen. 2018. Statistical Learning of API Fully Qualified
Names in Code Snippets of Online Forums. In Proceedings of the 40th International
Conference on Software Engineering (ICSE ’18). ACM, New York, NY, USA, 632–
642.

[49] H. D. Phan, A. T. Nguyen, T. D. Nguyen, and T. N. Nguyen. 2017. Statistical
Migration of API Usages. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). 47–50.

[50] Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted
Technical Debt. In Proceedings of the 30th IEEE International Conference on Software
Maintenance and Evolution (ICSME’14). 91–100.

When APIs are Intentionally Bypassed: An Exploratory Study of API Workarounds ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[51] Steven Raemaekers, Arie VanDeursen, and Joost Visser. 2012. Measuring software
library stability through historical version analysis. IEEE International Conference
on Software Maintenance, ICSM (2012), 378–387.

[52] M.M. Rahman, C. K. Roy, andD. Lo. 2016. RACK: Automatic API Recommendation
Using Crowdsourced Knowledge. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. 349–359.

[53] RedHat. 2019. Hibernate OGM. http://hibernate.org/orm
[54] Romain Robbes and Mircea Lungu. 2011. A study of ripple effects in software

ecosystems: (NIER track). 2011 33rd International Conference on Software Engi-
neering (ICSE) (2011), 904–907.

[55] Gordon Rugg and Peter Mcgeorge. 1997. The sorting techniques: a tutorial paper
on card sorts, picture sorts and item sorts. Expert Systems 14, 2 (1997), 80–93.

[56] C R Rupakheti and D Hou. 2012. Evaluating forum discussions to inform the
design of an API critic. In 2012 20th IEEE International Conference on Program
Comprehension (ICPC). 53–62.

[57] Simone Scalabrino, Gabriele Bavota, Mario Linares-Vásquez, Michele Lanza, and
Rocco Oliveto. 2019. Data-driven Solutions to Detect API Compatibility Issues in
Android: An Empirical Study. In Proceedings of the 16th International Conference
on Mining Software Repositories (MSR ’19). IEEE Press, Piscataway, NJ, USA,
288–298.

[58] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
documentation. Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014 (2014), 643–652.

[59] S. Thummalapenta and T. Xie. 2009. Alattin: Mining Alternative Patterns for
Detecting Neglected Conditions. In 2009 IEEE/ACM International Conference on
Automated Software Engineering. 283–294.

[60] Christoph Treude and Martin P. Robillard. 2016. Augmenting API documentation
with insights from stack overflow. Proceedings of the 38th International Conference
on Software Engineering - ICSE 16 (2016).

[61] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process 29, 4
(2016), e1838.

[62] Pradeep K. Venkatesh, Shaohua Wang, Feng Zhang, Ying Zou, and Ahmed E.
Hassan. 2016. What Do Client Developers Concern When Using Web APIs? An
Empirical Study onDeveloper Forums and Stack Overflow. 2016 IEEE International
Conference on Web Services (ICWS) (2016).

[63] Shaohua Wang, Iman Keivanloo, and Ying Zou. 2014. How Do Developers React
to RESTful API Evolution ? 12th International Conference, ICSOC 2014, Paris,
France, November 3-6, 2014. Proceedings 8831 (2014), 245–259.

[64] Shaohua Wang, NhatHai Phan, Yan Wang, and Yong Zhao. 2019. Extracting API
Tips from Developer Question and Answer Websites. In Proceedings of the 16th
International Conference on Mining Software Repositories (MSR ’19). IEEE Press,
Piscataway, NJ, USA, 321–332.

[65] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting
Object Usage Anomalies. In Proceedings of the the 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (ESEC-FSE ’07). ACM, New York, NY, USA,
35–44.

[66] Tal Weiss. 2019. We Analyzed 30,000 GitHub Projects - Here Are The Top 100
Libraries in Java, JS and Ruby. https://blog.overops.com/we-analyzed-30000-
github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/

[67] MingWen, Yepang Liu, RongxinWu, Xuan Xie, Shing-Chi Cheung, and Zhendong
Su. 2019. Exposing Library API Misuses via Mutation Analysis. In Proceedings of
the 41st International Conference on Software Engineering (ICSE ’19). IEEE Press,
Piscataway, NJ, USA, 866–877.

[68] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Histori-
cal and impact analysis of API breaking changes: A large-scale study. SANER
2017 - 24th IEEE International Conference on Software Analysis, Evolution, and
Reengineering Dcc (2017), 138–147.

[69] Deheng Ye, Zhenchang Xing, Chee Yong Foo, Jing Li, and Nachiket Kapre. 2017.
Learning to extract API mentions from informal natural language discussions.
Proceedings - 2016 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2016 (2017), 389–399.

[70] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman. 2011.
Investigating the Impact of Design Debt on Software Quality. In Proceedings of
the 2Nd Workshop on Managing Technical Debt (MTD ’11). ACM, New York, NY,
USA, 17–23.

[71] Tianyi Zhang, Di Yang, Crista Lopes, and Miryung Kim. 2019. Analyzing and
Supporting Adaptation of Online Code Examples. In Proceedings of the 41st Inter-
national Conference on Software Engineering (ICSE ’19). IEEE Press, Piscataway,
NJ, USA, 316–327.

[72] Y Zhang and D Hou. 2013. Extracting problematic API features from forum
discussions. In 2013 21st International Conference on Program Comprehension
(ICPC). 142–151.

[73] Jing Zhou and Robert J. Walker. 2016. API deprecation: a retrospective analysis
and detection method for code examples on the web. Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering -
FSE 2016 (2016), 266–277.

[74] T. Zimmermann. 2016. Card-sorting. Perspectives on Data Science for Software
Engineering (2016), 137–141.

