
Bridging the Divide Between API Users and API Developers by
Mining Public Code Repositories

Maxime Lamothe
Department of Computer Science and Software Engineering

Concordia University
Montreal, Canada

max_lam@encs.concordia.ca

ABSTRACT
Software application programming interfaces (APIs) are a ubiqui-
tous part of Software Engineering. The evolution of these APIs
requires constant effort from their developers and users alike. API
developers must constantly balance keeping their products modern
whilst keeping them as stable as possible. Meanwhile, API users
must continually be on the lookout to adapt to changes that could
break their applications. As APIs become more numerous, users are
challenged by a myriad of choices and information on which API
to use. Current research attempts to provide automatic documenta-
tion, code examples, and code completion to make API evolution
more scalable for users. Our work will attempt to establish practical
and scalable API evolution guidelines and tools based on public
code repositories, to aid both API users and API developers.

This thesis focuses on investigating the use of public code reposi-
tories provided by the open-source community to improve software
API engineering practices. More specifically, I seek to improve soft-
ware engineering practices linked to API evolution, both from the
perspective of API users and API developers. To achieve this goal, I
will apply quantitative and qualitative research methods to under-
stand the problems at hand. I will thenmine public code repositories
to develop novel solutions to these problems.

ACM Reference Format:
Maxime Lamothe. 2020. Bridging the Divide Between API Users and API
Developers by Mining Public Code Repositories. In 42nd International Con-
ference on Software Engineering Companion (ICSE ’20 Companion), May
23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3377812.3382124

1 INTRODUCTION
The current trends of software as a service and open public APIs
present increasing opportunities for developers to rely on externally
maintained software. However, as a consequence, software devel-
opers become dependent on frameworks and public application
program interfaces (APIs) [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7122-3/20/05. . . $15.00
https://doi.org/10.1145/3377812.3382124

Since the development of an API is typically independent from
its usage, API users are at the mercy of the evolution of the in-
terface. The development benefits provided by APIs come at a
price. By relying on APIs, users inevitably couple some of their
functionality to APIs over which they have little control [2]. This
coupling can be a challenge to users as they are forced to deal with
ever-evolving APIs [3]. Difficulties with changing dependencies
have led to terminology like “dependency hell” [2]. Furthermore,
knowledge gaps exist between API developers and API users [4].
Often, API developers communicate about their APIs through one
sided documentation channels such as wikis, manuals, tutorials,
or API code examples [4]. On the other hand, API users have lim-
ited access to API developers and few channels to communicate
their feedback. Some APIs even require knowledge of internal poli-
tics to reliably get patches accepted [2]. Without a direct feedback
channel, situations arise where API developers must rely on re-
peated user complaints to become aware of existing problems [4].
All too often, when users have issues with an API, for example need-
ing a new feature or experiencing a run-time problem, users may
choose to intentionally modify or work around the API [2]. These
workarounds allow API users to obtain their desired functionality
quickly and without going through potentially arduous communi-
cation with API developers. However, these workarounds are not
without consequence. On the one hand, since these workarounds
are created by API users as temporary solutions, many of these
workarounds may become technical debt, endangering code quality
and increasing future maintenance cost [5]. On the other hand,
these API workarounds are potentially missed opportunities for
API developers to improve their APIs (e.g., fixing bugs in the API).

Prior research has mainly concentrated on recommending or
producing specialized tools to provide aid to API users. These tools
attempt to use existing documentation or historical code-change
information to augment API developers’ efforts while providing
necessary information to API users. Concentrating on API users
is particularly prevalent in API migration tools [6]. However, this
methodology is often unidirectional, used to extract useful informa-
tion fromAPI development artifacts to help the API users with tasks
such as API migration or API recommendations [1]. API migration
and recommendation are not the only API research focuses that
concentrate on API users. API misuse research also fixates on API
users, concentrating on identifying, detecting, and correcting API
usage patterns that can be considered as deviant uses of APIs [7].

In this thesis I propose to bridge the divide betweenAPI users and
API developers by leveraging public code repositories. Therefore,
while I seek to further existing research to provide aid to API users
in adapting to API changes, I also seek to keep the API developers

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Maxime Lamothe

in the development loop. I believe that API users and developers
alike can benefit from the knowledge ingrained in public code
repositories. To overcome the knowledge gap that exist between
them, I propose tools, techniques, and user studies to help API
users and API developers. I seek to help API users adapt to changes
to APIs (e.g. API migrations). Meanwhile I also seek to help API
developers keep up with the ever increasing demands from their
users (e.g. API workarounds).

The rest of this paper is organized as follows. Section 2 high-
lights my research hypothesis. Section 3 aims to help API users
through an empirical study of the evolution of the Android API,
and a technique to migrate APIs through examples. To help API de-
velopers, in Section 4 I propose a study of API workaround patterns
and a technique to integrate API modifications into existing APIs.
Section 5 surveys related works. Section 6 concludes the paper.

2 RESEARCH HYPOTHESIS✄

✂

�

✁
With the advent of open-source software, coupled with the rising
popularity of software as a service and APIs, I hypothesize that
the divides caused by knowledge gaps between API users and API
developers in API development, usage, and maintenance can be
bridged by leveraging public code repositories.

The goal of this thesis is to facilitate the evolution, usage, and
development of APIs. I believe that by leveraging open-source soft-
ware through data-mining practices I can provide solutions to prob-
lems faced by both API users and API developers. I will leverage
open-source repositories to extract historical development infor-
mation from source code and documentation. Furthermore, I will
leverage open discussion forums such as Stack Overflow to uncover
real problems faced by developers. Finally, I can further leverage
the open-source nature of some APIs to directly propose solutions
to problems we find, for example through pull requests, and thereby
determine their acceptance by the developer community.

Throughout this thesis I will attempt to bridge the knowledge
gap between API developers and API users. For API users I leverage
historical data to propose a technique to provide code examples
to ease the burden of API migrations. For API developers, I seek
to determine patterns and causes for API workarounds and API
modifications employed by users. I then seek to develop techniques
to reduce API workarounds and API modifications to allow API
developers to provide well rounded APIs to their users.

3 HELPING API USERS
In this section, I present research to aid API users. I present an
exploratory study into API evolution to understand the problems
that plague API users. I also propose an API migration technique
to help remedy some of the problems I identify for API users.

3.1 An exploratory study of API evolution
Problem: APIs evolve quickly and require API users to migrate to
new versions to benefit from the most cutting edge features [8].
However, API documentation is often reported as incomplete or
outdated [9], which makes API migration a challenge for API users.
My co-authors and I seek to determine the problems, pitfalls, and
most effective solutions to API users that seek API migrations.

How mining public code repositories can help: Online documentation
and historical code-changes are prime examples of communication
channels between API users and API developers [8].
Our proposed solution:We first leverage the Android documentation,
since prior work has shown the importance of documentation in
API evolution [10]. As a second step, we leverage historical code
change information (e.g. commits) to contrast the results of the API
migration pathways obtained from documentation in the previous
step. Finally, we use free and open source apps to test the effec-
tiveness of our identified migration pathways; we leverage the API
migration suggestions that we automatically recovered from both
documentation (including official documentation, commitmessages,
and code comments) and historical code change information.
Results: We find that the information needed to identify replace-
ment API methods for migrations often resides explicitly in online
documentation and repository commits as natural language text.
Our findings indicate that although not all migrated methods can be
found in the official Android documentation, information needed
to assist in API migration can be also found in other forms of docu-
mentation, such as code commit messages and code comments.

Our experience agrees with prior research [11] and shows that
it is feasible to extract and provide suggestions when migrating
API methods to new versions. However, more importantly, we
found that implementing API migration code changes is much
more challenging than identifying migration pathways. Challenges
such as migrating multiple related-APIs, and type changes, present
changes which would often require extensive knowledge and effort.

Furthermore, our results and experiences imply that even though
documentation is often reported as incomplete or outdated [9], API
users should still consider the official documentation of the Android
API as their primary source of information. These results show that
current practices can allow API users to obtain adequate migration
information from API developers to understand what to migrate.
However, there are still problems in bridging an understanding on
how to migrate APIs. Completed and accepted at MSR 2018 [8]

3.2 API migration through examples
Problem: In today’s fast-paced development, APIs are evolving fre-
quently. The Android API is one such example of a rapidly-evolving
and widely used API [12]. Such evolution may entail arbitrary re-
lease schedules and API deprecation durations, and may involve
removing functionality with little to no prior warning [13]. There-
fore, users must regularly study the changes to existing APIs and
decidewhether they need tomigrate their code to adopt the changes.
As a consequence, there is fragmentation in the user base and slow
adopters miss out on new features and fixes [12].
How mining public code repositories can help: Previous research
has proposed approaches to help developers with API migration;
however, these approaches must be manually pointed towards pre-
migrated examples without the ability to automatically retrieve
or identify them [14]. Furthermore, the effectiveness of code ex-
amples on migration is affected by the context of the examples,
whereby examples with closer contexts will waste less developer
time when testing extraneous cases [14]. Therefore, by leveraging
public code repositories we can consider multiple examples from
different contexts to generate well-fitted migration solutions.

Bridging the Divide Between API Users and API Developers by Mining Public Code Repositories ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea

Our proposed solution: We propose an approach, named A3, that
mines and leverages source code examples to assist developers
with API migration. We focus on Android API migrations due to
Android’s wide adoption and fast evolution [12]. Our approach au-
tomatically learns the API migration patterns from code examples
taken from available code repositories, thereby providing a variety
of example patterns. Afterwards, our approach matches the learned
API migration patterns to the source code of the Android apps to
identify API migration candidates. If migration candidates are iden-
tified, we apply the learned migration patterns to the source code
of Android apps, and provide the resulting migration to developers
as a potential migration solution.
Preliminary results: To evaluate our approach, first A3 learns An-
droid API migration patterns from three sources of code examples:
1) official Android code examples, 2) migration patterns from the
development history of open source Android projects and 3) API
migration examples that are manually produced by users. Our ap-
proach then applies API migrations to open source Android apps.
Our approach can automatically identify 83 migration patterns with
96.1% precision in Android APIs, and obtains a recall of 97% using
a seeded repository. Based on 80 migrations candidates in 32 open
source apps, our approach can generate 14 faultless migrations, 21
migrations with minor code changes, and 36 migrations with useful
guidance to developers. Through a user study with 15 participants
and 6 API migration examples, we show that our approach provides,
on average, a 29% migration time improvement and is seen as useful
by developers. Our approach can be adopted by Android app de-
velopers to reduce their API migration efforts to cope with the fast
evolution of Android APIs. Our approach also exposes the value of
using the knowledge that resides in rich code examples to provide
assistance to API users with API related software maintenance.

Expected completion date: early 2020.

4 HELPING API DEVELOPERS
In this section I present avenues of research to help API developers.
I present a study into API workarounds to identify new sources
of information that can be integrated into APIs by API developers.
Furthermore, I also propose a technique to mine public software
repositories to extract information that can be used to advise API
developers in producing well rounded APIs.

4.1 Studying API workarounds
Problem: As software applications increase in size and complexity,
APIs become an integral part of software development. Software
is now often produced with help from a slew of APIs to speed up
development and reduce project overhead [3]. Dependencies have
been shown to be coupled to, and therefore impact, up to 62% of
client project source code [15].
How mining public code repositories can help: Open-source reposito-
ries and software forums are a rich source of API usage patterns.
We can leverage the large number of API uses to determine if
workaround pattern instances occur in API usage. Using real API
workarounds we can determine their prevalence and the potential
impact of integrating a specific workaround as official functionality
in the API code base.

Our proposed solution: We conduct an exploratory study of API
workarounds requested and implemented by API users. We manu-
ally examined 400 posts from Stack Overflow, where we found that
API users request API workarounds for a variety of reasons, such
as dependency issues, missing functionality, and runtime problems.
These reasons illustrate inherent value for API developers since
gaining access to these workarounds could improve their APIs.
Furthermore, we identified answers accepted by API users who
request API workarounds. By studying these answers, we found
that carrying out such API workarounds may not be a trivial task. In
particular, a majority of API workaround solutions require special
implementations to bypass the API.
Preliminary results: To follow up on our exploratory study, we
study workaround implementations that are suggested in the Stack
Overflow posts, and we observe three generalized API workaround
patterns. The knowledge contained in the implementation of these
patterns in API user projects can help API developers improve their
API by adding desirable unsupported features, fixing unexpected
behavior, and improving backwards compatibility.

Since our API workaround patterns were uncovered using forum
questions and answers, we seek to confirm their existence in real-
life API user code and confirm their usefulness with API developers.
Therefore, using five open-source APIs, we detected three patterns
of API workarounds in open-source GitHub projects. Finally, we
submitted and observed 12 feature requests to developers based on
the API workarounds to improve the APIs. Among these requests,
five are already closed, and six more have been confirmed by API
developers as bugs or missing features. Our study and findings
highlight the value of studying API usage as a means to bridge the
gap between API developer and API users in order to assist in the
development and maintenance of APIs. Completed and accepted at
ICSE 2020 [16]

4.2 Advising API developers
Problem: If API users producemodifications to APIs forworkarounds,
then there might exist other more general instances of API modifi-
cation. These API modifications may contain valuable information
that can be used to guide the development and maintenance of APIs.
Therefore, we want to determine whether we can automatically
leverage user modifications of APIs to determine useful develop-
ment prospects for API developers. If we can automatically extract
useful API development prospects, then we can save time for API
developers, and allow desirable features to be integrated into APIs
for API users, alleviating their maintenance efforts.
How mining public code repositories can help: Similarly to API
workarounds, open-source repositories can provide a rich source
of data for API usage patterns. We will therefore seek to leverage
a large number of open-source repositories to identify common
extension points for APIs and determine if any API extension pat-
terns occur in the API ecosystem. Based on these patterns we will
identify prospects for API improvement for API developers.
Our proposed solution: To answer this research question, we will
create a tool to parse Java repositories to detect user modifications
to existing APIs. We will gather a representative sample of API
user applications from open-source hosting services like GitHub,
and gather data for several Java based open-source APIs. We will

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Maxime Lamothe

attempt to automatically determine potential extension points for
APIs that do not currently exist as part of the API.
Our proposed evaluation: We will provide our mined API modifi-
cations to API developers as pull requests or feature requests to
determine whether they are useful to API developers or not.

Expected completion date: late 2020 - early 2021.

5 STATE OF THE ART AND PRACTICE
The following research is closely related to the work in this thesis.
API migration and suggestion tools Previous research has pro-
duced numerous API migration mapping methods [17], API studies
and API suggestion approaches [18] that rely on historical source
code repositories [9] or documentation [19]. Some suggestion ap-
proaches like ApiRec produced by Nguyen et al. [1] are based on the
intuition that developers make low-level changes while having a
higher-level intent in mind. However, these tools rely on historical
source-code information and existing documentation, they make
the assumption that the information they seek can be retrieved from
historical data, or the APIs source code. These tools often take API
users out of the API development cycle. Furthermore, the migration
methods usually present a single best migration pathway [9] and
may not present migration pathways that require multiple APIs.
Code examples and APIs EXAMPLORE is a visualization tool to
assist users in understanding common uses of APIs [20]. It uses
API examples to build common usage patterns. Since tools like
EXAMPLORE have shown useful in assisting users with API ques-
tions [20], I believe that using examples to provide API insights
could similarly be used for migration tools.
API usage andmisuseAPI usage patterns have been used in prior
work to understand how APIs evolve [12], to detect API compati-
bility issues [21], for API migration [8], code recommendation [22]
and more. API usage patterns can be extracted from source code [8]
and examples [20]. API misuses are characterized by their violation
of API constraints [7]. Misusing APIs can lead to an increase in soft-
ware security vulnerabilities and bugs [7]. This thesis concentrates
on constructive workarounds that could be API improvements, and
not on API misuses or unintentional alternate uses of APIs. I specifi-
cally concentrate on API usage that would not typically be expected
from API developers (i.e. workarounds).

6 CONCLUSION
This proposal centers around mining public code repository data
to improve API software engineering practices. More specifically, I
focus on bridging the divide between API users and API developers.
I seek to improve API usability for API users by understanding
the problem of API migration and reducing the migration effort
required from API users. Through preliminary findings, I have
shown that API migration is not a simple problem, but that existing
API migrations can be used as examples to help future migrations.
I seek to understand why and how API users use API workarounds
to help API developers produce well rounded APIs. I have shown
that an understanding of API workaround practices can be used
to inform API developers to reinforce the feedback loop between
API developers and API users. My future work will concentrate on
further improving API engineering practices by leveraging user
modifications of APIs to advise API development. My contributions

include: 1) a novel APImigration technique for API users; 2) opening
research avenues in API workarounds; 3) providing automated
suggestions of improvements for API developers. I expect to finish
the work for this thesis in 2021.

REFERENCES
[1] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast, E. Rademacher, T. N.

Nguyen, and D. Dig, “Api code recommendation using statistical learning from
fine-grained changes,” Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering - FSE 2016, 2016.

[2] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api: Cost
negotiation and community values in three software ecosystems,” in Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, (New York, NY, USA), pp. 109–120, ACM, 2016.

[3] D. Dig and R. Johnson, “How do apis evolve? a story of refactoring,” Journal of
Software: Evolution and Process, vol. 18, no. 2, pp. 83–107, 2006.

[4] B. Dagenais andM. P. Robillard, “Recovering traceability links between an api and
its learning resources,” 2012 34th International Conference on Software Engineering
(ICSE), 2012.

[5] A. Potdar and E. Shihab, “An exploratory study on self-admitted technical debt,”
in Proceedings of the 30th IEEE International Conference on Software Maintenance
and Evolution (ICSME’14), pp. 91–100, 2014.

[6] B. E. Cossette and R. J. Walker, “Seeking the ground truth: A retroactive study
on the evolution and migration of software libraries,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering,
FSE ’12, (New York, NY, USA), pp. 55:1–55:11, ACM, 2012.

[7] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “Investigating
next steps in static api misuse detection,” in Proceedings of the 16th International
Conference on Mining Software Repositories, MSR 19, pp. 265–275, 2019.

[8] M. Lamothe and W. Shang, “Exploring the use of automated api migrating tech-
niques in practice: An experience report on android,” MSR ’18: 15th International
Conference on Mining Software Repositories, 2018.

[9] B. Dagenais andM. P. Robillard, “Recommending adaptive changes for framework
evolution,” ACM Transactions on Software Engineering and Methodology, vol. 20,
no. 4, pp. 1–35, 2011.

[10] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst, M. A.
Gerosa, M. Godfrey, M. Lanza, M. Linares-Vasquez, and et al., “On-demand devel-
oper documentation,” 2017 IEEE International Conference on Software Maintenance
and Evolution, 2017.

[11] T. D. Nguyen, A. T. Nguyen, and T. N. Nguyen, “Mapping api elements for code
migration with vector representations,” in Proceedings of the 38th International
Conference on Software Engineering Companion, ICSE ’16, pp. 756–758, 2016.

[12] T. Mcdonnell, B. Ray, and M. Kim, “An empirical study of api stability and adop-
tion in the android ecosystem,” 2013 IEEE International Conference on Software
Maintenance, 2013.

[13] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to deprecation of
clients of 4 + 1 popular Java APIs and the JDK,” Empirical Software Engineering,
pp. 1–40, 2017.

[14] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann, eds., Recommenda-
tion Systems in Software Engineering. Springer Berlin Heidelberg, 2014.

[15] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “How the
apache community upgrades dependencies: An evolutionary study,” Empirical
Softw. Engg., vol. 20, pp. 1275–1317, Oct. 2015.

[16] M. Lamothe andW. Shang, “When apis are intentionally bypassed: An exploratory
study of api workarounds,” in Proceedings. 42nd International Conference on Soft-
ware Engineering, ICSE 2020, 2020.

[17] M. Kim, “LASE: Locating and Applying Systematic Edits by Learning from Ex-
amples,” ICSE, pp. 502–511, 2013.

[18] T. Zhang, D. Yang, C. Lopes, and M. Kim, “Analyzing and supporting adaptation
of online code examples,” in 41st International Conference on Software Engineering,
ICSE ’19, (Piscataway, NJ, USA), pp. 316–327, IEEE Press, 2019.

[19] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Jdiff: A differencing technique
and tool for object-oriented programs,” Automated Software Engineering, vol. 14,
no. 1, pp. 3–36, 2006.

[20] E. L. Glassman, T. Zhang, B. Hartmann, and M. Kim, “Visualizing api usage
examples at scale,” in Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI ’18, (New York, NY, USA), pp. 580:1–580:12, ACM, 2018.

[21] S. Scalabrino, G. Bavota, M. Linares-Vásquez, M. Lanza, and R. Oliveto, “Data-
driven solutions to detect api compatibility issues in android: An empirical study,”
in Proceedings of the 16th International Conference on Mining Software Repositories,
MSR ’19, (Piscataway, NJ, USA), pp. 288–298, IEEE Press, 2019.

[22] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, L. Ochoa, T. Degueule, and M. Di Penta,
“Focus: A recommender system for mining api function calls and usage patterns,”
in Proceedings of the 41st International Conference on Software Engineering, ICSE
’19, (Piscataway, NJ, USA), pp. 1050–1060, IEEE Press, 2019.

