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ABSTRACT

Continuous Integration (CI) is a popular practice that enables the
rapid pace of modern software development. Cloud-based CI ser-
vices have made CI ubiquitous by relieving software teams of the
hassle of maintaining a CI infrastructure. To improve these CI ser-
vices, prior research has focused on analyzing historical CI data to
help service consumers. However, finding areas of improvement
for CI service providers could also improve the experience for ser-
vice consumers. To search for these opportunities, we conduct an
empirical study of 22.2 million builds spanning 7,795 open-source
projects that used CIrcLECI from 2012 to 2020.

First, we quantitatively analyze the builds (i.e., invocations of
the CI service) with passing or failing outcomes. We observe that
the heavy and typical service consumer groups spend significantly
different proportions of time on seven of the nine build actions
(e.g., dependency retrieval). On the other hand, the compilation and
testing actions consistently consume a large proportion of build
time across consumer groups (median 33%). Second, we study builds
that terminate prior to generating a pass or fail signal. Through a
systematic manual analysis, we find that availability issues, config-
uration errors, user cancellation, and exceeding time limits are key
reasons that lead to premature build termination.

Our observations suggest that (1) heavy service consumers would
benefit most from build acceleration approaches that tackle long
build durations (e.g., skipping build steps) or high throughput rates
(e.g., optimizing CI service job queues), (2) efficiency in CI pipelines
can be improved for most CI consumers by focusing on the compi-
lation and testing stages, and (3) avoiding misconfigurations and
tackling service availability issues present the largest opportunities
for improving the robustness of CI services.
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1 INTRODUCTION

Continuous Integration (CI) [9] is a software development practice
in which development events (e.g., the creation of and updates to
pull requests, pushes to central code repositories) trigger build,
test, and reporting routines automatically. The main goal of CI is
to provide fast feedback to developers, allowing them to verify
whether their changes cleanly integrate with other changes. Indeed,
the benefits of CI, such as increases in developer productivity and
improved software quality, have been observed by the software
development community [42]. Both open source [4] and propri-
etary [10, 37] software organizations have dedicated resources to
maintaining and operating CI pipelines for this purpose.

Dedicated cloud-based CI providers, such as CIRcLECI and TrAVIS
CI offer CI services for software organizations. These services pro-
vide consumers with the benefits of CI without the hassle of provi-
sioning, operating, and maintaining CI infrastructure.

The broad adoption of CI services has facilitated research on CI.
Researchers have interpreted the outcome [13] and duration [15]
of the builds run by these CI providers from the perspective of
the CI consumers, discussing the challenges and benefits of adopt-
ing CI [47]. However, the CI providers’ perspective has remained
largely unexplored. Focusing on build data from the perspective of
CI service providers could uncover opportunities to holistically im-
prove the CI solutions that swaths of software teams rely upon. For
example, focusing optimization effort on slow CI stages could drive
down service costs for the CI service providers and simultaneously
provide fast feedback to their consumers.

To that end, we conduct an exploratory case study of CIRCLECI—
one of the most popular CI service providers for projects hosted on
GiTHuB. Our observations are likely to generalize to other popular
cloud-based CI/CD providers (e.g., TRavis CI, GitHub Actions) with
similar features (e.g., YAML-based configuration, social coding plat-
form integration, container-based orchestration, support job-based
parallelism for projects that target multiple execution platforms).
Our analysis includes 22.2 million builds spanning 7,795 open source
projects that used CIRCLECI during the period of 2012-2020. This
data enables us to address the following research questions:
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RQ1:How does the usage of a CI service change over time?
Motivation: Studying the growth of CircLECI in terms of
active consumers and productivity heuristics may help to
identify specific areas that need attention to improve re-
source allocation and the overall user experience.

Results: During the last eight years, the CIRcLECI service
has grown, in terms of both monthly consumers and total
number of builds that are invoked every month. However,
this growth has stagnated since mid-2020. At least 14% of
projects that were inactive on CIRCLECI during 2020 have
started using another CI service. Throughput and build du-
ration have been increasing (up to 25 minutes per build and
900 builds per month) for the platform’s heaviest consumers,
while median values have remained stable. Inequality in
terms of build execution rates and resource consumption has
steadily increased to Gini coefficients of 95% and 98%.
Recommendations: Additional resource usage incurred by
growth could be tackled by applying build acceleration and
skipping approaches from the literature. The high success
rate shows that there is a large pool of builds that could
likely be safely skipped. Automated repair techniques can
be used to further reduce MTTR.

RQ2:How is time spent during signal-generating builds?
Motivation: Signal-generating builds terminate with either
a pass or fail outcome. By understanding the time consump-
tion of different steps in the CI pipeline, service providers
can identify resource bottlenecks and estimate operational
costs. Identifying stages that slow down the CI pipeline can
allow researchers and developers to target the most impact-
ful stages.

Results: Compared to other stages in the CI process, a larger
proportion (median 35%) of the CI runtime is spent on the
compilation and testing stages.

Recommendations: Focusing research efforts on accelerat-
ing testing and compilation steps in the CI pipeline will yield
the largest reductions to CI workload costs for CI providers
and feedback delays for CI consumers. The heaviest con-
sumers will benefit most from the allocation of additional
network bandwidth during dependency installation or the
deployment of local mirrors of dependency archives.

RQ3:Why are some builds unable to provide a signal?
Motivation: When a build does not provide a signal, devel-
opers are not provided with feedback about the changes
that they have submitted. Since receiving early feedback is a
key feature of CI, these non-signal-generating builds are a
concern. Studying why builds fail early without providing a
signal can help service providers and researchers to develop
approaches to mitigate such instances, yielding more robust
and available CI services.

Results: Most non-signal-generating builds occur due to user
cancellation (46.4%), availability issues (22.0%), configuration
errors (1.8%), and exceeding time limits (1.1%).
Recommendations: Promising directions for research include
the analysis of why consumers cancel builds, and the devel-
opment of approaches to improve traceability of orphaned
builds and identify builds that are likely to time out.
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2 CORE CONCEPTS IN MODERN CI

The consumers of CI services may subscribe with multiple
projects, each with its own CI workflow. A workflow is com-
prised of one or more jobs. The result of executing a workflow
is referred to as a build. CI services typically support specifying
workflows in a configuration file (e.g., .circleci/config.yml for
CIrciLeCl, . travis.yml for Travis CI). Although this configura-
tion file is primarily used to specify the sequence of commands to
be executed, other options can be customized like:

Parallelism: The number of parallel instances of a job to run.
Environment: Environment variables to be set for each build.
Resource Class: The compute resources allocated to each job.

Workflows can be configured to invoke builds based on develop-
ment events (e.g., when a pull request is created or updated or when
a push to a central repository is performed), on a schedule (e.g.,
nightly), or manually (e.g., programmatically via an API request
or on-demand to retry a build without changing the code). Once
a build request is received, depending on the subscription of the
consumer and the workflow configuration of the project, a build
environment (e.g., a set of physical machines, virtual machines,
and/or containers) is allocated to execute the build.

2.1 CI Build Outcomes

CI builds are executed with the expectation that they will produce
a signal indicating whether changes to the codebase are ready to
be integrated. However, in practice, build outcomes are not always
conclusive. Therefore, we categorize build outcomes as either:

Signal-generating. Builds that execute until a passing or failing
outcome is produced. If a build passes, CI consumers know
that the associated changes to the codebase have at least
passed the baseline checks. If a build fails, CI consumers
can diagnose the problems with their changes while design
decisions are still fresh in their minds.

Non-signal-generating. Builds that are terminated before com-
pletion. A build could prematurely terminate due to a user
aborting the build, configuration errors, or infrastructure
provisioning issues. These builds do not provide consumers
with a meaningful signal about their changes.

In an ideal CI pipeline, all builds are signal generating. If non-
signal-generating builds occur often, service consumers will lose
faith in a provider’s ability to deliver a meaningful CI signal.

2.2 CI Indicators

CI providers have proposed indicators to track performance in CI

pipelines. CIRcLECI! has recently proposed four such indicators:

Build Duration. The time taken for a build to execute. A long
duration may force developers to switch contexts—a costly
action for knowledge workers like software engineers [30].
A short duration may indicate inadequate testing is included
in the CI workflow.

Mean Time to Recovery (MTTR). The average length of the
time interval between the end times of failing and subse-
quent passing builds. A long MTTR suggests that failures

Uhttps://circleci.com/resources/data-driven-ci/
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are difficult to diagnose or resolve, or a lack of build sta-
tus monitoring. A short MTTR suggests that consumers are
quickly resolving build failures without too much disruption.

Success Rate. The proportion of signal-generating builds with
passing outcomes. The importance of the success rate is con-
text sensitive. The success rate in the main branch where a
large team collaborates should be kept high to avoid imped-
ing development progress. On the other hand, the success
rate in a developer-specific feature branch may be irrelevant.

Throughput. The number of builds that are performed during a
given period of time. Throughput may vary across projects
based on the development model and the team size. This
metric gives an indication of expected total server load and
network bandwidth usage for the CI service provider.

These four indicators provide insight into the maturity of CI
adoption among CIRCLECI consumers. Individual software organi-
zations also may find these indicators useful to understand how
their CI usage compares with others. Recently, CIRcLECI started
providing these metrics to their users on a per-workflow basis
within their web interface. In this study, we use these indicators to
characterize the growth of CI usage over time.

3 STUDY DESIGN

In this section, we provide our rationale for studying CIrcLECI
(Section 3.1), and describe our data extraction (Section 3.2) and data
analysis approaches (Section 3.3).

3.1 Subject CI Provider

With the popularity of CI as a software development practice, many
cloud-based providers offer CI services. A Forrester market report?
identified five leaders in the cloud-native CI area by comparing their
current product offerings, strategy, and market presence, namely: (1)
Google Cloud Build, (2) AWS Code Build, (3) Azure DevOps Service,
(4) GitLab, and (5) CIrcLECL. Among these area leaders, according
to GITHUB marketplace statistics,> CIRCLECI has the largest number
of installs (748k). Therefore, considering its popularity and that CI
build data for a large number of its users is openly available for a
span of eight years, we choose to focus our analysis on CIRCLECL
As a leading CI platform, CIRcLECI has served over one million
developers during its nine years of operation.*

3.2 Data Extraction and Filtering

Figure 1 provides an overview of our data extraction and filtering
approach. We describe each step below.

To arrive at reliable conclusions representing the workload of a
typical CI service provider, it is important that we access all pub-
licly available build data for projects that use CIRCLECIL. We start
by querying for projects that use CIRcLECI in the public GiTHUB
dataset on Google BigQuery,? one of the largest publicly avail-
able datasets of software repositories. For this purpose, we check

Zhttps://www.forrester.com/report/ The+Forrester+Wave+CloudNative+
Continuous+Integration+Tools+Q3+2019/-/E-RES148217

Shttps://github.com/marketplace?category=continuous-integration&query=
sort%3Apopularity-desc

“https://circleci.com/milestones/

Shttps://cloud.google.com/bigquery/public- data/github

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

for projects that have a .circleci/config.yml configuration file
in their version control system (see DE1 of Figure 1). This query
identifies 10,170 projects with a CIRCLECI configuration.

Having a CIRcLECI configuration file in its version control system
is a necessary but not sufficient condition to conclude that a project
uses the CIRCLECI service. Even with a CI configuration file, it is
possible that the CI service was never activated or that no CI builds
were run for a particular project. Therefore, we query the CIRCLECI
API for projects that have run at least one CI build in their lifetime
(see DE2 of Figure 1). A corpus of 8,259 projects survive this filter.

Next, via the CIRCLECI API, we retrieve the metadata of the builds
that are associated with the surviving projects. A total of 23,330,690
build records were retrieved (see DE3 of Figure 1). We remove
builds that have missing values for mandatory fields (i.e., platform,
ves_url, build_num) because we, as external observers, cannot
determine why these fields are incomplete. We also remove builds
that were started after December 31st, 2020 (see DE4 of Figure 1).
We chose this cutoff date to allow only completed calendar years
into our dataset for analysis. We use the 22,238,413 unique builds
spanning 7,795 projects for further analysis.

3.3 Data Analysis

Figure 1 provides an overview of our data analysis approach. We
describe each step below.

We first extract the outcome of each build and label each one as
signal-generating or non-signal-generating. We label builds with
an outcome of success or failed as signal-generating builds be-
cause these builds provide a conclusive signal to the user, reporting
whether their proposed changes can be integrated into the mainline
of development or not. All builds with other outcomes are cate-
gorized as non-signal-generating because they were prematurely
terminated without providing a signal.

Next, we identify projects that are heavy CI consumers. We
consider projects that consume a large proportion of the build time
as heavy consumers and determine a threshold for this consumption.
To identify these heavy CI consumers, we first calculate the total
monthly build time consumption for all projects. Then, we consider
a monthly build time consumption threshold value, above which
projects are considered heavy CI consumers. We then modify this
threshold value to verify its impact on the size of the heavy CI user
sample that we obtain. We consider a threshold value acceptable
if fluctuations in the threshold value present little variance in the
number of heavy CI consumers.

We use all build activity data to answer RQ1. To answer RQ2 and
RQ3, we use signal-generating and non-signal-generating builds,
respectively.

4 STUDY RESULTS

In this section, we present the results of our study with respect to
our research questions. For each research question, we describe the
approach used to address it, and the results that we observe.

(RQ1) How does the usage of a CI service change
over time?

RQ1: Approach. For each month throughout the studied period
from 2012 to 2020, we plot the number of projects that use CIRCLECI
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Figure 2: The growth of CIRcLECI usage during the period
of 2012-2020. The number of projects that used CIRcLECI
in each month is shown in purple. The number of CIRcLECI
builds of these projects in each month is shown in yellow.
Both lines are Loess-smoothed curves with gray shaded ar-
eas indicating the 95% confidence interval.

and the number of total builds that are run on CIRcLECI. Then we
plot the growth of CIrRcLECT’s usage by computing the project-level
values of: (a) Build Duration, (b) Mean Time to Recovery (MTTR),
(c) Success Rate, and (d) Throughput (see Section 2.2).

RQ1: Results. Figure 2 shows the growth of CIRcLECI usage during
the studied period, in terms of the number of projects that are using
CIrcLECI (shown in blue) and the number of total builds that are
executed on CIRCLECI (shown in red).

Observation 1: The number of builds per month across all studied
projects grew over the years, reached a peak of 872,842 builds during
the month of April 2020, and then declined. Competitive pricing and
new features offered by other service providers such as GiTLAB
CI and GiTHUB Actions—GITHUB’s own automation service—may
have contributed to a user exodus from CircLECI. For instance, com-
pared to the 250 free minutes of build time per month in CircLECI,
GiTHUB Actions provides 20 free parallel builds and unlimited build
minutes for every open source project. There are other community
and technical factors at play. For example, Widder et al. [46] ob-
served that projects with more pull requests tend to be less likely
to abandon a CI service. This suggest that the projects derive value
from CI by using it to evaluate pull requests. Similarly, Widder et

Figure 3: Number of builds on CircLECI platforms 1 and 2
during the 2012-2020 time period.

al. found that projects with longer build durations are less likely to
abandon CI, suggesting that projects with more complex builds are
better able to adapt the CI service to fit their needs.

To explore whether other CI service providers are attracting
users away from CIRcLECI, we investigate the CI usage of projects
that have stopped using CIRcLECI. For this purpose, we focus on
projects that have not executed any CI builds on CIRcLECI during
2020, the last year of our analysis. We find that 39% (3,074 of 7,795)
projects match this criteria. Then, we query the GiTHuB API to
determine if these projects have reported the result of a build from
any other CI service during the year 2020 or if they have configured
GiTHUB Actions to execute any CI workflows.

Observation 2: At least 14% (425 of 3,074) projects that were inac-
tive on CIRCLECI during the year 2020 have started using another CI
service. We found that projects that became inactive on CIRCLECI
migrated to other CI providers such as Travis CI (50%), GiTHUB Ac-
TIONS (35%), APPVEYOR (16%), SCRUTINIZER (2%), and SEMAPHORECI
(2%). The inactive projects on CIRCLECI had configured at least 20
different CI services to report results back to GiITHUB. Some of
these projects were configured to use more than one CI service,
therefore the sum of percentages exceeds 100%.

Figure 3 shows the number of builds on the two different Cir-
cLECI platforms during the 2012-2020 time period. The second
version of the CIRCLECI platform® provided users with additional

Shttps://circleci.com/blog/say-hello-to-circleci-2-0/
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(c) Success Rate

(d) Throughput

Figure 4: The evolution of four CI indicators during the period of 2012-2020 in CIRcLECI. The median value of each metric
across the subject systems is shown by the black line. The 90% confidence interval is shown by the gray band.

capabilities like native support for Docker images, flexible resource
allocation, customizable images, and SSH access. The release of this
updated platform may have contributed to the rapid growth during
the 2016-2018 period. The CIrcLECI 2.0 platform was available as a
closed beta in November 2016 and was later made publicly available
for all CircLECI consumers in July 2017. Figure 3 shows that these
dates coincide with sharp changes in the CIrcLECI build activity.

Observation 3: While median project-level indicator values have
remained stable, indicators like throughput and build duration have
been increasing among the platform’s heaviest consumers. Figure 4
shows the evolution of the four project-level indicators over the
studied period. Median values are computed to aggregate individual
builds to the level of a project. The black lines show the provider-
level medians and gray bands show 90% confidence intervals of
each metric across the projects.

Figure 4(a) shows that the median build duration stayed below
200 seconds throughout our data. However, 5% of studied projects
took at least 25 minutes to build. Similarly, a study conducted by
CrrcLECI’ between August 1 and August 30, 2020 found 50% of

"https://circleci.com/landing-pages/assets/2020- State- of-Software_Metrics-
Report_Final.pdf

the studied workflows ran to completion in under four minutes
while 5% of the workflows took more than 35 minutes. These large
projects might benefit from the CI acceleration techniques proposed
in prior research [12].

Figure 4(b) shows a fluctuating median MTTR before December
of 2014 because of the low number of observations. However, after
this, the median MTTR stayed in the range of 12-87 mins. Similarly,
the CrrcLECI study” reported that 50% of the workflows recovered
in 55 minutes. For the slowest 5% of projects, the MTTR was at
least one week. As shown in prior research [13], these projects
could be taking a long time to recover from build failures because
the software teams are not taking the CI signal seriously. Only
a small proportion of software teams may be focusing on fixing
broken builds. For the benefit of software teams who are truly
struggling to repair builds, research in automatically repairing build
breakage [19, 26], providing developer assistance for build breakage
resolution [44], and more broadly automated program repair [24]
can be incorporated into CI services to fix build breakages quickly
thereby reducing the MTTR.

The large confidence interval in Figure 4(c) shows that the suc-
cess rate varies widely between projects. Although the median
success rate fluctuates before December of 2014, the rate gradually


https://circleci.com/landing-pages/assets/2020-State-of-Software_Metrics-Report_Final.pdf
https://circleci.com/landing-pages/assets/2020-State-of-Software_Metrics-Report_Final.pdf

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

100%

75%-+
IS
9]
S
E
Q 50%-
o
=
O]

25%- — Throughput

Total Build Time
0%

2012/12
2013/12
2014/12
2015/12
2016/12
2017/12
2018/12
2019/12
2020/12

Figure 5: Gini coefficient for throughput and total build time
during 2012-2020. Inequality of CI consumers is increasing.

increases later in the studied period and ranges between 67%-92%
of all builds. Similarly, the CIRcLECI study” reported that median
success rates were 80% for the default branch and 58% for the non-
default branch. This demonstrates that, increasingly, in the majority
of CI builds, the newly introduced changes are not causing any
build failures. If these changes that are not causing any build fail-
ures can be identified in advance, the execution of such CI builds
can be completely skipped, saving time and compute resources.
Abdalkareem et al. [1] have proposed a machine learning approach
to identify such commits that can be skipped. Jin and Servant [23]
have proposed to reduce the high cost of CI by running fewer builds,
while running as many failing builds as early as possible. Similarly,
Ananthanarayanan et al. [3] have proposed to use a probabilistic
model, powered by logistic regression to select builds that are most
likely to succeed, and speculatively execute them in parallel. These
approaches to skip builds can be used by CI providers to prioritize
builds that can uncover faults early without wasting computing
resources on the growing proportion of passing builds.

Figure 4(d) shows that the median throughput remained under
30 throughout the studied period (roughly one build per day). How-
ever, for 5% of the studied projects, the throughput grew rapidly
and reached a peak of 900 builds per month. Confirming our ob-
servations, the CIRcLECI study’ reported that 50% of workflows
were invoked fewer than one time per day (0.7), while in the top
5%, workflows were invoked over 35 times per day.

Observation 4: Inequality of build execution and resource consump-
tion has steadily increased over time. To further investigate the
imbalance of CI usage across users during the studied period, we
compute the Gini coefficient [16], a popular measure of inequality.
We calculate the Gini coefficient of the throughput and total build
time. The Gini coefficient of the throughput estimates inequality
in the number of builds being executed, while the Gini coefficient
of total build time provides a finer grained perspective. We do not
consider projects with no builds for the calculation of Gini index in
a given month. Therefore, the reported values should be interpreted
as a lower bound on the true inequality.
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Figure 5 shows the evolution of the Gini coefficients of through-
put and total build time as Loess-smoothed curves with gray shaded
areas indicating the 95% confidence interval. Increasingly high Gini
coefficients indicate that there is a smaller number of projects that
generate a larger proportion of builds and consume a greater pro-
portion of the build time per month. Since these heavy consumers
run CI builds frequently, and put a heavy burden on a CI provider’s
resources, it is important for CI providers like CIRCLECI to invest
in approaches that optimize the workloads of their heaviest con-
sumers.

Although the demand for CI has rapidly grown over the
years, CI providers have managed to provide a consistent
service for the regular consumers. However, to cater to the
heaviest consumers who account for a growing proportion
of the build activity and resources, CI providers may benefit
from research breakthroughs in the areas of build accelera-
tion, and automated build and program repair.

(RQ2) How is time spent during
signal-generating builds?

RQ2: Approach. To answer RQ2, we focus our analysis on signal-
generating builds. The CIRcLECI API response provides start and
end times for each step in a given build. Furthermore, each step has
an action type which is machine, infrastructure, checkout, dependen-
cies, compile, test, database, deployment, or teardown. We use the
action type and runtime of each build step to compute the percent-
age of runtime spent executing each action type in a build. Then,
we apply the Scott-Knott Effect Size Difference (ESD) test [39] to
cluster the action types of build steps into statistically distinct ranks
based on the proportion of the build time spent on each action type.

Moreover, we investigate whether the time spent during the
signal-generating builds of heavy consumers is different from typi-
cal consumers. After identification of heavy consumers, we apply
the Mann-Whitney U test [27] and Cliff’s Delta [7] statistical in-
struments. We use those tests because they allow for comparison
of the runtime distributions of build steps in heavy and typical
consumer categories without an assumption of normality.

In this RQ, note that we are investigating how time is spent
performing different actions during builds and not the amount of
time spent on each action. Therefore, we focus on relative values
instead of absolute values with regard to durations.

RQ2: Results. The top three rows of Table 1 show the distribution
of signal-generating builds used to answer RQ2.

Observation 5: Compiling source code and running tests take up the
greatest proportion of the build runtime. Figure 6 shows the run time
percentage for each action in signal-generating builds. The median
runtime percentages of the compilation and testing stages are 33.2%
and 32.5%, respectively. The next largest action type is downloading
dependencies, with a median of 19.5% and is a statistically distinct
rank lower than compilation and testing. Focusing efforts to reduce
the time taken for compilation and testing stages during the build
will provide the most value for CI providers.

An attentive reader may think that the results of RQ2 are influ-
enced by aggregating builds from different projects. For example,
based on the results of RQ1, it is likely that Figure 6 is influenced by
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Table 1: Distribution of Build Outcome. The global percent-
age of each category is shown in brackets.

Outcome # %

Success 18,831,874  80.72%
Failed 2,806,795 12.03%
Sub Total (21,638,666) 92.75%

Signal-generating

Non-signal-generating Canceled 850,033 3.64%
Infrastructure fail 10,993 0.05%
Timedout 17,917 0.08%
No tests 36,184 0.16%
Null 776,964 3.33%
Sub Total  (1,692,024)  7.25%
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Figure 6: Runtime percentage of each action type in signal-
generating builds. The numbered rows indicate the distinct
ranks discovered by the Scott-Knott ESD ranker.

projects that generate many builds/many action types. Because we
chose to focus on the overall impact of each action type on the CI
service providers, we believe that the influence of aggregate build
data is relevant for the service providers.

However, as we observe in RQ1, the heaviest consumers exhibit
different behaviour than others. Figure 7 shows the distribution of
monthly build time consumption across all studied projects. Guided
by this, we select 1% of total monthly build time consumption as the
threshold for identifying projects that heavily use CI. Based on this
threshold, we identify 27 of 7,795 projects as heavy CI consumers.
We conservatively selected this threshold based on the distribu-
tion of consumption data which follows a lognormal distribution
(Anderson-Darling normality test [38] for log-transformed values,
a = 0.05). In the log-transformed distribution, our 1% threshold is
5.7 standard deviations away from the mean and therefore projects
above the threshold are certainly outliers (typically 2-3 SDs away
from the mean).

To check if the selected threshold for identifying heavy CI con-
sumers is suitable, we change the threshold value and see how many
projects survive. A more lenient threshold of 0.9% only categorizes
five more of the 7,795 projects as heavy consumers. A more strict
threshold of 1.1% removes only four more projects from the group
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Figure 7: Distribution of median monthly build time con-
sumption. Dashed black line at 1% marks the threshold for
selecting heavy CI consumers.
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Figure 8: Runtime percentage of each action type in signal-
generating builds in heavy CI consumers vs others.

of heavy consumers. This indicates that the chosen threshold value
will not heavily impact the sample size of heavy CI consumers.

Furthermore, note that the group of heaviest consumers (n=27)
identified in this RQ and the 27 projects with highest values for each
indicator in RQ1 may not be the same set of projects. While there
is considerable overlap between the group of heaviest consumers
(n=27) identified in this RQ and the 27 projects with the highest
throughput (15 projects = 55%) of RQ1, there is no overlap between
the heaviest consumers and the 27 projects with the largest build
durations, MTTRs, and success rates of RQ1. We do not believe this
is a concern because the largest outliers of these measures do not
represent the same concept.

Observation 6: For all action types except deployment and compile,
there were statistically significant differences between heavy user
builds and other builds, in terms of the runtime percentage. Figure 8
compares the runtime percentage of each action type in the signal-
generating builds of heavy and typical consumer groups. We apply
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the Mann-Whitney U test to the runtime percentage of each ac-
tion type for the builds of the two user groups. The results show
that there are significant differences in the usage patterns and re-
source consumption of heavy CI consumers compared to typical
consumers (p < 2.2 X 10716) for all action types except deployment
and compile. The deployment and compile action types had insuffi-
cient evidence (i.e., one and zero observations respectively) among
the builds of heavy consumers to reach any conclusions. Based
on Clift’s delta, effect sizes are large for infrastructure, checkout,
database, and teardown action types. The effect size is medium for
the dependencies action type, while for the machine and test action
types the effect sizes are small.

As heavy consumers account for an increasing portion of re-
source consumption, catering to their needs will have a substantial
effect on CI providers as well. For example, heavy consumers are
spending more time downloading dependencies during the CI pro-
cess compared to typical consumers. Therefore, if accelerating those
builds is a priority, the CI service can allocate additional network
bandwidth during the dependency installation of the heavy con-
sumers. Caching the build environment after a CI build is run and
reusing that environment in subsequent builds could help to reduce
the bandwidth demand, as proposed in prior work [12], because it
will eliminate the need to download dependencies for some builds.

Approaches to make testing and compiling faster will benefit
a large proportion of CI consumers. The heaviest consumers
(and CI providers as a consequence) will benefit most from
approaches to optimize dependency installation.

(RQ3) Why are some builds unable to provide a
signal?

RQ3: Approach. First, we use an open coding approach on a ran-
domized sample to study the reasons why builds failed to generate
a signal. Next, we evaluate the identified set of reasons (i.e., codes)
by developing scripts to label example builds automatically. We
also manually code a sample of the script-classified builds to eval-
uate correctness. Finally, we group codes according to common
themes. Below, we describe our sampling, discovery, validation, and
grouping procedures in more detail.

Sampling. The bottom six rows of Table 1 show the outcomes of
1.69 million non-signal-generating builds. Since coding all of these
builds is impractical, we select a random sample for coding.

Our goal is to discover as complete of a set of reasons for why
signals could not be generated for builds as possible. Therefore,
we strive to achieve saturation with our codes. Similar to prior
work [22], we code randomly selected non-signal-generating builds
until no new codes are discovered for 50 consecutive builds.

We aim to achieve saturation separately for each outcome type
(provided by CircLECI) of non-signal-generating builds. We reach
saturation after coding 53, 53, 50, 50 and 116 builds for canceled,
infrastructure_fail, timedout, no_tests, and NULL outcome
types, respectively.

Discovery. Code discovery was performed by all three authors dur-
ing remote coding sessions. During the coding sessions, the authors
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Table 2: Reasons why build signals could not be generated.

Category # %

Availability issues 371,647 1.59%
Orphaned builds 359,857  1.54%
Github unreachable 797  0.00%
Infrastructure fail 10,993  0.05%

Configuration Errors 31,238 0.13%
Missing or outdated configuration file 30,065 0.13%
Unsupported XCode version 26 0.00%
Github missing CircleCI SSH key 23 0.00%

785,877 3.37%

User Cancellation

Timed out 17,917 0.08%

Other

485,345 2.08%

jointly analyzed CIRcLECI API responses, build logs, and git com-
mits of the sampled non-signal-generating builds to identify the
circumstances that led to the particular outcome type.

Validation. To ensure that the identification of the codes is consis-
tent and repeatable, we synthesize our manual coding behaviour
into classification scripts. We run these scripts on a sample of 100
non-signal-generating builds. The sample is also manually coded by
one author and the inter-rater agreement (Cohen’s x) is computed
to measure the agreement between automatic and manual labels.
Grouping. We apply open card sorting to construct a taxonomy of
codes to help us to discover latent themes in our detailed coded
data. We present these themes to help guide decisions to improve
future research and practice in the context of CI services. This card
sorting activity was performed collaboratively by all authors.
RQ3: Results. Table 2 provides an overview of the coded reasons
for why builds were unable to provide signals. In the validation
phase, we observe a perfect inter-rater agreement (Cohen’s k = 1)
between automatic and manual labels, demonstrating a consistent
and repeatable coding. Below, we describe the discovered codes in
detail according to the four themes that we discovered.

Observation 7: At least 371,647 builds failed to generate a signal
due to availability issues of the CI service and the supporting services.
A CI service that is available and reliable is essential to provid-
ing prompt feedback to consumers. However, we observe multiple
instances where the CI service or the supporting services were
unavailable. We observe that 10,993 builds which were unable to
provide a signal had an infrastructure_fail outcome. Accord-
ing to CIRcLECI forum discussions,? builds can terminate with the
infrastructure_fail outcome due to faults in CIrRcLECI inter-
nal infrastructure or other services that are contacted during the
builds (e.g., GrTHUB, AWS). Although builds that terminate due to
infrastructure failures are restarted automatically, it wastes time
and resources.

8https://support.circleci.com/hc/en-us/articles/360007792373- There-was-an-
issue-while- running-this-container- and-it-was-rerun-The- most-recent-run-is-
shown-


https://support.circleci.com/hc/en-us/articles/360007792373-There-was-an-issue-while-running-this-container-and-it-was-rerun-The-most-recent-run-is-shown-
https://support.circleci.com/hc/en-us/articles/360007792373-There-was-an-issue-while-running-this-container-and-it-was-rerun-The-most-recent-run-is-shown-
https://support.circleci.com/hc/en-us/articles/360007792373-There-was-an-issue-while-running-this-container-and-it-was-rerun-The-most-recent-run-is-shown-

Lessons from Eight Years of Operational Data from a Continuous Integration Service

Of the builds with a NULL outcome, 359,857 builds were not exe-
cuted and no explanation was provided. Further investigation re-
vealed that there were no references to these build requests from the
GrTHuUB side. Therefore, we code such builds as orphaned builds. An
additional 797 builds with NULL outcomes had not started because
fetching information from GirTHUB was unsuccessful. Moreover,
incident reports’ in the CircreCI status dashboard confirmed the
occurences of occasional service outages that prevented builds from
executing.

To put these rates of failure in context, let us presume that CI
providers like CIRcLECI are striving to achieve industry-standard
levels of availability like five nines (99.999%). These availability lev-
els are often achieved by cloud services [31]. In total, at least 371,647
(1.59%) failed to generate a signal due to availability issues of the
CI service and the supporting services. This suggests that CIRcLECI
falls a little bit short of this standard (98.41% = 100% - 1.59%), but
it is a goal that is not too far out of reach. Since we do not have
access to the internals of CIrRcLECI service, we cannot pinpoint the
specific architectural shortcomings that lead to availability issues.
However, since prior research has identified that investing effort
in disaster recovery, fast failure detection, and eliminating single
points of failure [29] help to improve availability in cloud services,
we recommend CI services in general to direct their attention to
such best practices.

Observation 8: The vast majority of cancelled builds (92%) were
cancelled by user request. We observe that 50% of the non-signal-
generating builds (849,954 of 1,692,024) were abruptly terminated
with a build outcome of cancelled. Our coding reveals two reasons
for cancellation; user requests or automatically by CIRcLECI if the
build is determined to be redundant. If the Auto-cancel redundant
builds feature is enabled, CIRCLECI cancels any queued or running
builds when a newer build is triggered on that same branch. We find
that only 64,077 of the cancelled builds were cancelled automatically.
The vast majority (785,877) were cancelled by user request. Since
no further reason is provided, future user studies may help to better
understand why so many builds are being cancelled by consumers.

Observation 9: 17,917 builds timed out before completion. If there is
no output from any of the commands during build execution for ten
minutes, CIRCLECI terminates the build. We observe that builds time
out at all stages of the CI process (e.g., setting up the environment,
installing dependencies, testing). Currently, consumers can extend
the timeout in the CI configuration if they expect a build step
to continue longer than ten minutes without output. However,
programmatically determining if a program will terminate is a
form of undecidable problem known as the halting problem [40].
Therefore, using only the source code changes to be built, CI service
cannot determine if a build will eventually terminate if given more
time or will hang forever. Although termination analysis research
has proposed automatic tools to determine whether some builds
will eventually terminate, implementing such solutions in a CI
service to support a multitude of programming languages and build
tools is infeasible. Instead, CI services can use recent past build
outcomes to speculate that a build will time out, similar to how

“https://status.circleci.com/incidents/kxw3dyhykqkb
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SMARTBUILDSKIP [23] operates based on the hypothesis that failing
builds in CI happen consecutively after another build failure.

Observation 10: At least 31,238 builds failed to generate a signal
due to misconfigurations. There are three codes that are associated
with misconfigurations that lead to signals not being generated. At
least 31,238 builds with NULL outcomes did not complete because
the CI process was not properly configured (e.g., 30,065 builds
with missing or outdated CIrcLECI configuration files, 26 builds
specifying an unsupported Xcode version, 23 builds where GiTHUB
was missing a CIRCLECI SSH key). Adoption of tools such as CI-
ODOR [43] and HANSEL & GRETEL [14] proposed in prior research to
identify and fix configuration errors may reduce future occurrences
of the builds terminating due to misconfiguration.

Furthermore, some configuration issues are resolved over time
by the service provider. For example, in platform version 1.0 of
CIrcLEC], if a command was not defined for the testing phase of
the CI process, the build terminated with the special outcome of
No tests. To prevent this behaviour from interfering with their
workflow, CIRCLECI consumers had to include an explicit no-op
command in the testing phase of their CI configuration. We found
that 36,184 builds terminated with a build outcome of No tests.In
version 2.0 of the CIRcLECI platform, this requirement was relaxed
such that a test section was not required for build job execution.

Availability issues, configuration errors, user cancellation,
and exceeding time limits are key reasons that lead to non-
signal-generating builds. Approaches to increase the avail-
ability and improve the robustness of CI configuration will
likely yield the largest reductions in non-signal-generating

builds.

5 THREATS TO VALIDITY
This section describes the threats to the validity of our study.

5.1 Construct Validity

We use the mapping of commands and action types provided by
CircLECI API to determine the CI stage for each command and then
compute the time distribution for each signal-generating build. The
accuracy of this mapping depends on CIRCLECT’s labelling. To miti-
gate this threat, we manually inspected a sample of 50 commands
and their assigned action types for consistency.

Some CI consumers may have configured CI builds that finish
quickly and return a successful build outcome in seconds without
executing any useful tests. In such situations, metrics such as build
duration and success rate will not provide value as indicators of
the effectiveness of CL Therefore, we do not promote these metrics
as goals for software teams. Instead, we use them as indicators of
service usage from the CI providers’ perspective.

5.2 Internal Validity

We manually analyze API responses, build logs, and source code
changes to characterize reasons that cause builds to terminate with-
out providing a signal. To discover as complete of a set of reasons as
is possible, we set out to achieve saturation in our samples of man-
ually analyzed examples of non-signal-generating builds. Although
we set what we believe to be a conservative saturation criterion (50
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consecutively labelled examples without discovering a new label),
our approach is not exhaustive. There may be other reasons that
caused the builds to abruptly terminate, which have not yet been un-
covered. Nonetheless, we were able to discover a set of reasons that
can be (a) linked to actionable implications for CI service providers;
and (b) automatically discovered, enabling further characterization
and the assessment of mitigation strategies.

5.3 External Validity

Although we studied a large sample of projects (7,795) and builds
(23.3 million) spanning a long period (eight years), our study fo-
cuses on the context of a single CI provider. As a consequence of the
choice of the research method, we aim to provide deeper insights on
a single case and does not aim at statistical generalizability. On the
other hand, modern CI providers share a similar configuration inter-
face (simple YAML-based DSLs) and largely overlapping feature sets
(e.g., social coding platform integration, container-based orchestra-
tion, job-based parallelism support for projects that target multiple
execution platforms, and multiple programming languages). There-
fore, we suspect that similar conclusions would be drawn from
other service providers. Nevertheless, replication studies in other
contexts might prove fruitful.

6 RELATED WORK

In this section, we situate our work in the context of the literature
on the analysis of CI data, the challenges associated with CI, and
the service provider perspective in other DevOps contexts.

6.1 Analysis of CI Datasets

The analysis of large collections of historical CI data is not uncom-
mon in the literature. For example, the TRavi1s CI service has been
the target of several research efforts. Beller et al’s TravisTorrent [6]
provides a curated set of data about 2.6 million builds from the
Travis CI service. Their initial analysis indicates that testing is
the single dominant reason for builds to fail [5]. Durieux et al. [8]
have curated an even larger set of 35 million TrRavis CI jobs. Using
independent collections of Travis CI data, Hilton et al. [21] studied
how developers use CI and Rausch et al. [33] performed a targeted
analysis of build failures in the context of Java open source systems.
Similarly, Zhang et al. [50] have studied 6.9 million CI builds to
identify the ten most common compiler error types. Complement-
ing the work on build categorizations based on failures, in our work,
we categorize the build outcome based on whether a signal was
provided to the consumer at the end of the build.

Prior work has demonstrated that these corpora, made of large
collections of operational data, are not free of noise. Gallaba et
al. [13] found that, on average, there is at least one build with
an inaccurate outcome in every eleven builds that they analyze.
Zolfagharinia et al. [52] described the build inflation problem in
an analysis of 30 million builds from the Perl ecosystem. Felidré
et al. [11] identified four characteristics of projects that use CI
technology without adopting CI principles. Since our focus is to
provide the CI provider’s perspective of the overall usage of the CI
service, we do not remove noisy builds from our analysis.

A line of work on anti-patterns has emerged from the studies
of CI data. Gallaba et al. [14] formulate four anti-patterns that
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impact CI specifications, and propose HANSEL & GRETEL to detect
and repair them. Vassallo et al. [43] identified four additional anti-
patterns that hinder the benefits associated with CI, and propose
CI-ODoR to detect them. Zampetti et al. [49] studied Q&A forums
to identify 79 CI smells. Since slow build durations hinder the
pace of development, Ghaleb et al. [15] characterize builds with
long durations. While these prior works adopt the CI consumers’
perspective, we focus on the CI providers’ perspective to facilitate
all users amidst the presence of anti-patterns.

Collections of build data have also been used to study the links be-
tween the adoption of CI and other project characteristics. Vasilescu
et al. [41, 42] observe an increase in developer-reported bugs after
the introduction of CI, suggesting that CI helps developers discover
more defects. Zhao et al. [51] report that the introduction of CI
technology is associated with a higher rate of successful pull re-
quests; however, pull requests tend to take longer to arrive at an
outcome. Instead of focusing on individual project characteristics,
we focus on the overall state of the CI service over time.

6.2 Challenges in CI

Researchers have also studied the challenges faced when software
teams are adopting CI. By conducting a qualitative study, Hilton
et al. [20] found that when using CI, developers face trade-offs
between speed and certainty, better access and security, and more
configuration options and ease of use. Pinto et al. [32] surveyed 158
CI users about the benefits and problems of CI systems and found
that developers are unsure about what constitutes a successful build,
due to reasons such as flaky tests or misconfigured CI jobs. Widder
et al. [47], identify information overload, organizational pain points,
configuration, slow feedback, and testing deficiencies as the main CI
pain points. Using the CI provider’s perspective, our work confirms
that slow feedback due to long-running builds and configuration
issues causing non-signal-generating builds are common in practice,
strengthening the conclusions from prior work.

6.3 DevOps Service Providers’ Perspective

There have been several studies on the design and operation of large-
scale DevOps services. Schermann and Leitner [36] propose using
genetic algorithms for scheduling experiments when continuous
deployment is used by software organizations. Similarly, Giinalp et
al. [17] present Rondo, a tool suite for continuous deployment of
service-oriented applications, which aims for a deterministic and
idempotent deployment process.

Going beyond research experiments, practitioners also report on
state-of-the-art DevOps platforms developed at large-scale software
organizations. Esfahani et al. [10] describe how Microsoft’s internal
distributed build service was designed to speed up the CI workflow
of their existing projects. Gupta et al. [18] report on how a large-
scale online experimentation platform was designed at Microsoft to
provide scalable and trustworthy results for internal users in their
controlled experiments. An experience report by Savor et al. [35]
presents observations from following the continuous deployment
process of cloud-based software at Facebook and OANDA. Similarly,
Rossi et al. [34] describe how continuous deployment is practiced
during mobile software development at Facebook.
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While prior work focuses on designing and maintaining DevOps
infrastructure for internal users, exposing the service to external
users may also present unique challenges. We therefore look into
the challenges in providing CI services for external users.

7 CONCLUSIONS & LESSONS LEARNED

Through an empirical study of 23.3 million builds from the popular
CircLECI service, we set out to better understand the challenges
that CI service providers face and the opportunities that are present.
We make ten observations (see Section 4) from which we conclude
that prior research innovations are well-suited to address current
limitations in CI services:

The rapidly growing build throughput and build durations
of heavy consumers (Observation 3) suggest that build accel-
eration approaches are needed to stem this rising tide. Large
software organizations like Microsoft and Google have produced
internal solutions to accelerate builds [10]; however, their adoption
in other settings presents challenges. Approaches like KoTinos [12]
strive to make accelerated builds accessible to other organizations.
The high rate of successful builds suggests that CI providers have a
growing pool of candidate builds with which to apply techniques
proposed in the literature to skip builds. For example, candidate
approaches [1] aim to save resources and time by skipping the exe-
cution of builds that are unlikely to fail. Prior work [2] estimates
that 18% of successful builds could be skipped, equating to 3.38
million builds in our setting — leading to considerable savings for
a provider like CIRCLECI. Furthermore, CI providers can consider
offering suggestions to developers to fix build errors by using auto-
mated repair techniques like BurLpMEDIC [26], HIREBUILD [19], and
DeEPDELTA [28], thereby reducing the MTTR. Vassallo et al. [45]
have shown that suggesting public solutions to build breakages,
which can be found online, reduces the time to fix breakages by an
average of 37%.

Hypothesis: Tools and techniques for accelerating builds
will help manage the rapid growth in build throughput and
build durations.

Focusing optimization effort on compilation and testing
stages will likely provide the most benefit. Most of the build
time is spent in the compilation and testing stages for a large propor-
tion of service consumers (Observation 5). Therefore, approaches
to optimize compilation and testing steps effectively reducing their
run time or skipping such steps altogether, are well suited to drive
down service costs and improve throughput. For example, research
in the Facebook context has shown that using one such strategy,
predictive test selection [25], can reduce the total infrastructure
cost of testing code changes by a factor of two. Yet there are chal-
lenges that make adopting such approaches difficult in the (global)
context of a CI provider. For example, the plethora of build tools, lan-
guage toolchains, and testing frameworks makes tool- and language-
specific approaches [1, 17, 19, 48] unlikely to yield optimal results.
Any provider-side solution will need to operate in the heteroge-
neous deployment environment in which CI services operate.
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Hypothesis: Language-agnostic solutions in CI services to
optimize compilation and testing stages will be most benefi-
cial to reduce build durations.

Providing more transparency regarding orphaned builds
may improve the user experience. Orphaned builds constitute a
large proportion of the builds that are affected by availability issues
(Observation 7). These builds do not provide any details about the
internal failures that caused the disruption of the service and are not
linked from GiTHUB. To users, orphaned builds are entirely opaque
service failures, which may impact their perception of the service
provider. Therefore, providing detailed reporting and traceability
for orphaned builds will improve the user experience, helping to
retain and attract consumers for the CI service.

Hypothesis: Providing visibility about orphaned builds will
improve customer retention and growth.

Service providers can use recent past build outcomes to iden-
tify builds that are likely to timeout. We find 17,917 builds
timed out without generating a signal (Observation 9). Timed out
builds take the full allocated time reserved to perform a build and do
not provide a change status signal. Therefore, although these builds
account for a small percentage of all builds, from the perspective
of both CI providers and consumers, timed out builds are a waste
of the maximum amount of resources and time. However, due to
its similarity to the halting problem, identifying builds that will
time out is not trivial. Instead, similar to SMARTBUILDSKIP [23], CI
service providers can use heuristics (e.g., many time-out builds in
CI are followed by more consecutive time-out builds.) to skip builds
that are likely to time-out, saving resources.

Hypothesis: Heuristics such as frequent time-out builds in
the recent past can be used to identify and skip builds that
are likely to time out.

User research is needed to better understand why builds are
being cancelled by users. Since one of the most common rea-
sons for abruptly terminating CI builds is cancellation by the user
(Observation 8), future research is needed to characterize this be-
haviour. For example, while cancellation may indicate that a build
was unintentionally triggered (e.g., publishing a PR before it was
ready), there may be other cases that more careful user experience
engineering could help to mitigate.

Hypothesis: User research will help to understand reasons
for user-cancelled builds.

In order to aid in future replication of our results, we make our
data and scripts publicly available online.!
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