
Exploring the Notion of Risk in Code Reviewer
Recommendation

Farshad Kazemi∗, Maxime Lamothe†, Shane McIntosh∗
∗University of Waterloo, Canada, †Polytechnique Montréal, Canada
E-mail: {given_name}.{family_name}@{∗uwaterloo.ca||†polymtl.ca}

Abstract—Reviewing code changes allows stakeholders to
improve the premise, content, and structure of changes prior
to or after integration. However, assigning reviewing tasks to
team members is challenging, particularly in large projects.
Code reviewer recommendation has been proposed to assist
with this challenge. Traditionally, the performance of reviewer
recommenders has been derived based on historical data, where
better solutions are those that recommend exactly which reviewers
actually performed tasks in the past. More recent work expands
the goals of recommenders to include mitigating turnover-
based knowledge loss and avoiding overburdening the core
development team. In this paper, we set out to explore how
reviewer recommendation can incorporate the risk of defect
proneness. To this end, we propose the Changeset Safety Ratio
(CSR) – an evaluation measurement designed to capture the risk
of defect proneness. Through an empirical study of three open
source projects, we observe that: (1) existing approaches tend to
improve one or two quantities of interest, such as core developers
workload while degrading others (especially the CSR); (2) Risk
Aware Recommender (RAR) – our proposed enhancement to
multi-objective reviewer recommendation – achieves a 12.48%
increase in expertise of review assignees and a 80% increase
in CSR with respect to historical assignees, all while reducing
the files at risk of knowledge loss by 19.39% and imposing a
negligible 0.93% increase in workload for the core team; and
(3) our dynamic method outperforms static and normalization-
based tuning methods in adapting RAR to suit risk-averse and
balanced risk usage scenarios to a significant degree (Conover’s
test, α < 0.05; small to large Kendall’s W).

Index Terms—Code Review Recommendation, Mining Software
Repositories, Software Quality

I. INTRODUCTION

Code review is the process by which developers assess each
other’s code changes [1]. This process can help to prevent
bugs in their early stages before they are merged into the
code base [2]. The tool-based code review process is known to
provide stakeholders with technical [3–5] and non-technical [6]
benefits. A popular form of code review, which often involves
a tool-based procedure, is called modern code review [7].

Finding reviewers with the time to review a code change and
familiarity with the modified subsystems has been a challenge
in organizations who adopt code review [8, 9]. This is especially
the case for large organizations with hundreds of developers.
In such organizations, the author of a contribution may not yet
have a professional relationship with the team responsible for
overseeing the development of all of the components that they
have changed. Code Reviewer Recommendation (CRR) aims
to help stakeholders to find suitable reviewers [10].

While early reviewer recommendation studies were evaluated
against historical records, i.e., who performed each task in the
past [11], more recent work explores how recommendation
approaches can be used to balance quantities of interest
[12, 13]. These approaches consider previous interactions
of the candidates with the modified files, the workload of
the candidates at the time of the code review, and previous
interactions between the developers in the project. Candidate
reviewers are then ranked based on these metrics, and top-
ranked candidates are suggested to decision-makers.

The results from previous studies suggest reviewers who
share properties with those who performed similar reviews
in the past and improve evaluation metrics such as files at
risk. While the measures that have been proposed by previous
studies align with important dimensions, the risk of defect
proneness has not been explored. The risk of defect proneness
of a code change indicates how probable it is for the change
to induce fixes in the future. As an intervention, changes with
a high risk of inducing future fixes may be assigned to subject
matter experts for review. Prior work suggests that subject
matter experts may be more adept at identifying problems
during the review process [14, 15]. However, this intervention
is likely to impose a greater burden on key team members.

In this paper, we take the position that an ideal recom-
mendation approach should balance the trade-off between the
burden on expert reviewers and the risk of defect proneness.
Therefore, we set out to incorporate defect proneness in the
reviewer recommendation process. More specifically, we set
out to address the following research questions:
RQ1 How do existing code reviewer recommenders per-

form with respect to the risk of inducing future fixes?
Motivation: Every code change induces some degree of
risk. The degree of risk varies based on the change and
its domain [16]. A key goal of the code review process is
assessing and mitigating the risk of introducing defects
during or shortly after the code integration process [17].
It is crucial to involve subject matter experts in the review
process to achieve that goal. Otherwise, if non-experts
review high-risk tasks, defects may slip through the
integration process. Thus, we first set out to understand
how well existing reviewing assignments and CRR-based
reassignments perform in terms of risk mitigation.
Results: We observe an inherent trade-off between our
studied quantities of interest. For instance, the Reten-
tionRec recommender – a reviewer recommendation

approach proposed to minimize the risk of developer
turnover-based knowledge loss while ignoring other
quantities of interest – reduces files at risk by up to
23.89% with respect to the reviewers who have already
performed the review. On the other hand, RetentionRec
underperforms in terms of the Changeset Safety Ratio
(CSR) – a measure that we propose to indicate the
performance of a recommendation approach concerning
the safety of the code change process – by 4.56% to
37.07%.

RQ2 How can the risk of fix-inducing code changes be
effectively balanced with other quantities of interest?
Motivation: Optimizing for other quantities of interests,
such as files at risk of turnover, without considering
defect proneness is unlikely to perform well due to
the inherent trade-offs discovered in RQ1. Therefore,
an approach is needed to incorporate defect proneness
in recommendation decisions without overly disrupting
other quantities of interest. To that end, we propose
RAR – a reviewer recommendation approach that aims
to incorporate defect risk into recommendations – and
set out to evaluate how well it performs.
Results: Our experiments indicate that RAR increases
the expertise of reviewers assigned to reviews by 12.48%
and the CSR by 80.00% while reducing files at risk
of turnover by -19.39% and only increasing the core
development team workload by 0.93%. Moreover, we
find that project or team-specific tolerance of risk can
be incorporated by adjusting the threshold PD, which
is the threshold of the likelihood of fix-inducing PRs
at which changes are deemed risky enough to require
intervention. The effective PD interval is defined as the
change interval for which the performance of the RAR is
impacted. For instance, in Roslyn, the effective interval
of PD is 0 - 1; however, the effective interval of PD is
0 - 0.3 and 0 - 0.1 for the Kubernetes and Rust projects,
respectively. Thus, PD must be calibrated to its effective
range for RAR to achieve optimal results.

RQ3 How can we identify an effective fix-inducing likeli-
hood threshold (PD) interval for a given project?
Motivation: The performance of RAR depends on the
PD setting. PD itself is dependent on a project’s past
defect proneness. Moreover, different projects may assign
different weights to the importance of defect proneness.
Therefore, we set out to propose approaches to support
stakeholders in tuning PD to an appropriate value for
their development context.
Results: We propose static, normalization, and dynamic
approaches to tune the value of PD. Results that
explore PD settings in risk-averse, risk-tolerant, and
balanced contexts indicate that the proposed methods
affect the performance of RAR significantly. Moreover,
the dynamic method outperforms the others in risk-
averse and balanced contexts to a statistically significant
(Conover’s Test, α < 0.05) and practically significant
degree (Kendall’s W = 0.0727 - 0.543, small - large).

II. RELATED WORK

In this section, we describe related studies on defect
proneness prediction and reviewer recommendation approaches.
Reviewer Recommendation. The main task of a reviewer
recommender is to suggest suitable reviewers for reviewing
tasks. Reviewer recommenders often leverage historical data
to make recommendations [18, 19]. Other approaches aim
to optimize other characteristics, such as workload balance
[12, 20] or distributing knowledge [13]. Regardless of the
optimization method, when a new Pull Request (PR) is created,
the recommender ranks potential candidates based on the score
that has been calculated by its objective function.

Recently, however, early work has explored a change in
perspective of the goal of the reviewer recommendation process.
Kovalenko et al. [21] observed that developers are often aware
of the top recommendations of CRR approaches, suggesting
that other goals, such as workload balancing, might be more
appropriate. Gauthier et al. [22] found that history-based evalua-
tions of reviewer recommenders are often more pessimistic than
optimistic since the proposed reviewers who did not perform
a review (i.e., incorrect recommendations) often reported high
comfort levels with those review tasks. Mirsaeedi and Rigby
[13] proposed Sofia, a multi-objective recommendation system
that tries to maximize reviewer expertise and minimize the
risk of turnover-based knowledge loss, as well as the workload
on the core development team. In this paper, we set out to
complement the prior work by also incorporating estimates of
the risk of inducing future fixes in the recommendation process.
To this end, we evaluate three different projects using seven
different approaches. We use cHRev [19] as a conventional
recommender to suggest reviewers. In addition, we consider
greedy recommendation strategies like LearnRec [13], which
tries to maximize the learning from a PR. We also evaluated
Sofia [13] as a state-of-the-art recommender.
Defect Prediction. Defect prediction models are used to help
the stakeholders of a project focus their limited resources
on bug-prone modules [23]. Practitioners have used defect
prediction systems to find bugs in their early stages, reducing
technical debt [24] and the effort required to fix them. These
models can also help teams identify buggy changes before
they are merged into the repository. These defect prediction
models are often trained using historical data and then used
to assess new code changes by estimating the likelihood that
a given code change will induce a future fix (i.e., estimating
the fix-inducing likelihood). There have been a plethora of
contributions on defect prediction, but we focus below on two
lines of work that are most relevant, i.e., (1) approaches to
more accurately identify fix-inducing changes and (2) proposed
indicators of fix-inducing commits. Just-In-Time (JIT) defect
prediction models — like any prediction model — will only
be as good as their training data. Since the true set of fix-
inducing changes is not clearly labelled in historical software
data, heuristic approaches are used to recover that signal.

The SZZ algorithm [25] first identifies bug-fixing commits
by mining for keywords such as “fix" or “bug" in commit

messages. Next, potential fix-inducing commits are associated
with these fixes by tracing lines that were removed or modified
back to the commit(s) that introduced them. Finally, filters
are applied to remove potential fix-inducing changes that are
unlikely to have caused the bug (e.g., potentially fix-inducing
commits that were recorded after the bug was created in the
issue tracker). The SZZ algorithm has seen several revisions
in the literature [26, 27]. Since improving SZZ is beyond the
scope of this paper, we use the off-the-shelf implementation
of SZZ available in the Commit Guru tool [28].

The set of indicators that are used to predict fix-inducing
changes are derived from the change itself, historical tendencies
of the modified areas of code, and characterization of the
personnel involved with the change [23]. For example, Kamei
et al. [29] used measures of the size, purpose, and diffusion of
a change, as well as the historical tendencies of the modified
modules and the experience of change authors to estimate the
likelihood of a change to induce future fixes. Hoang et al.
[30] and McIntosh et al. [31] expanded the set of measures to
include review metrics such as iterations, number of reviewers,
and comments. Pascarella et al. [32] added more detailed
measures such as owner’s contribution lines, and change code
scattering. In this paper, we use the set of measures that have
been provided by Commit Guru to calculate the 13 metrics
similar to Kamei et al. ’s set of measures for various Pull
Requests (PR) based on PR’s Commits.

Different variables are used as defect prediction model input,
usually based on the change, source code metrics and historical
data [23]. However, some studies have used code change chunks
as well as metrics such as developer networks to determine
the buggy commits [33]. In this study, we use the output of
Commit Guru to identify commit features. The tool needs a
GitHub repository address to perform the SZZ analysis on the
repository. Given a specific Git branch, Commit Guru starts
analyzing the desired Git branch and identifies the fix-inducing
commits using the SZZ algorithm. The implementation details
of the Commit Guru tool can be found in a study by Kamei
et al. [29]. Commit Guru extracts thirteen metrics for each
commit (Table 2 in supporting materials [34]) and a flag that
indicates whether the commit is suspected to be fix-inducing.
We use these metrics and the fix-inducing flag to predict the
defect proneness of code changes.

III. STUDIED DATASETS

In this section, we present the sources of data and the projects
used to conduct our study and the rationale for their selection.
Data Source. To evaluate RAR, we seek to ground our
analysis in a comparison to previous multi-objective reviewer
recommenders [13]. Therefore, to obtain a fair comparison,
we begin with the same subject systems that Mirsaeedi and
Rigby studied [13]. However, two of these projects, CoreFx
and CoreCLR have been since merged with the .Net Runtime
project. Due to this migration, Commit Guru was unable to
obtain the necessary information for the prediction model and
rendered us unable to process the master branch for possible fix-
inducing commits. As a result, we omit CoreFx and CoreCLR,

focusing our analysis on Rust, Kubernetes, and Roslyn. Rust
and Kubernetes are community-driven projects, and Roslyn
is an industry project developed openly on GitHub. These
projects are well-established (more than four years old) with
more than 10K PRs. Kubernetes has had a significant impact on
cloud computing platforms with more than 3.1K contributors.
Roslyn, with 524 contributors, is an open source .NET compiler
platform for languages such as C# and VB. Finally, Rust,
with 3.8K contributors, is a multi-paradigm, general-purpose
programming language. Further details of these projects are
listed in Table 1 of our supporting materials [34].
Data Collection. We begin our data collection process by
downloading the relevant details from the replication package
provided by Mirsaeedi and Rigby [35]. The shared data
includes commits, files that have been modified in each commit,
developers involved in a PR, a list of developers and reviewers
of each PR, and developers’ interaction with the PR. To perform
defect analysis, our approach requires a list of the commits that
comprise each of the PRs. Moreover, we need to compute the
measures listed in Table 2 in supporting materials [34] to train
our defect prediction model. We use the GitHub API to gather
the additional data for each PR in the data set. We did not use
the commits of a PR to calculate additions and deletions since
they might have cancelled each other out (e.g., one line added
in one commit could be removed in the next commit of the
same PR). Instead, we calculate the net number of additions
and deletions extracted directly for each of the PRs.

IV. STUDY DESIGN

This study is comprised of two parts: (1) identifying fix-
inducing PRs and (2) evaluating reviewer recommendation
approaches. This section describes each part of our study and
explains the rationale behind our design decisions.

A. Identifying and Predicting Fix-Inducing PRs

Because our approach aims to incorporate the notion of risk
in the recommendation process, identifying fix-inducing PRs
with which to evaluate our approach is an important part of
the study. In this study, we operationalize risk by mining the
repositories of the studied projects for defect-fixing, and fix-
inducing commits using Commit Guru [28]. Figure 1 provides
an overview of our discovery process for risky PRs.

Step1: Extract defect prediction data: We first apply Commit
Guru [28] to the studied repositories in order to produce
data sets of fix-inducing commits, as well as a popular
set of measures for their prediction. Commit Guru clones
each repository, computes commit-level measures that share a
relationship with risk (e.g. patch size, diffusion), and applies
the SZZ algorithm [25] to identify which historical commits
have induced future fixes. Finally, a logistic regression model
is fit to estimate the riskiness of code changes. Table 2 in
supporting materials [34] shows the set of used risk measures.

Although studies by Quach et al. showed some of the
limitations of SZZ ([36, 37]), its output is still an indicator
of bug-inducing probability. Moreover, we decided not to use

Step 1: Identify the buggy commits and their metrics

Commit data from
previous periods

Create a logistic
regression model

Commit data from
current period

Evaluate the model
performance

Step 2: Train defect prediction model and test it

Normalize
Omit highly
 correlated

metrics

Preprocessing

Commit Guru
Analyzes

the Commits

Determine commit
metrics and fix-
inducing commits Commit

Guru
Analyzed

result

Prediction Model

Is change fix-
inducing?

Historical data

Selected
Projects

Have more
than 10K

Pull-
Request

Have review
rate more
than 0.25

Have a life
more than 4

years

Have more
than 10K

files.

Project Filters

GitHub
Projects

Figure 1: The simplified overall architecture of the project selection filters and the defect prediction process.

manually verified bug datasets such as the one by Rodriguez-
Perez et al. [38] as we wanted to view the effects of the
recommendation approaches in their natural habitat, which
would normally be automated and include tools such as SZZ.

Step2: Train and test PR-level risk model: We use the risk
measures extracted by Commit Guru to train defect prediction
models. A logistic regression method is used to train the
model for each quarter (three months). The three-month time
interval is based on similar studies, like Mirsaeedi and Rigby
[13], and retraining this period length setting allows us to
extend reviewer recommendation approaches to incorporate
risk and more directly compare results. Moreover, updating
the prediction model in short (three months) intervals has been
recommended to counteract concept drift [39]. This step is
decomposed into the following tasks:

1) Data preprocessing. Before training the models, data must
be preprocessed to counteract biases. First, we standardize
the risk measures since their magnitudes vary broadly. We
use Scikit StandardScaler1 to transpose all risk measures’
values to have zero mean and unit variance. Then, we
identify highly correlated measures, as they affect the
model’s performance. To this end, we calculate pairwise
Pearson correlation (ρ) between each pair of risk measures.
As suggested by Tay [40], any pair of risk measures with
|ρ| > 0.6 is considered to have too much similarity to
include in the same model fit. In such cases, we remove all
the measures but one (Based on their order of appearance
as listed in Table 2 in supporting online materials [34]).

2) Fit defect prediction model. Once the data has been
preprocessed, we use the data to fit a logistic regression
model for every quarter using the previous quarters’ data.
The model then estimates the likelihood that each code
change will be fix-inducing in the following quarters.

3) Aggregate risk estimates to the level of PRs. Using
the trained models, we estimate the riskiness of each
PR by aggregating the risk measures across all of the
PR changes. We use the PR’s commits risk measures
to calculate the risk measures for a PR. Table 2 in the
supporting online materials [34] has a brief explanation
of how each of these risk measures is calculated from
the set of commits belonging to a PR. Using the PR
risk measures, the model estimates the PR’s likelihood
of inducing a future fix. We use the balanced accuracy
performance measure to evaluate the performance of our

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing
.StandardScaler.html

models since our datasets are inherently imbalanced, i.e.
there are more non-fix-inducing PRs than fix-inducing
PRs. The median balanced accuracy over different periods
for Roslyn, Rust, and Kubernetes projects are 75.9%, 50%,
and 97.5%, respectively.

B. Ranking potential reviewers of a PR

As the next step, we use the fix-inducing likelihood of
the PR and its risk measures to suggest reviewers for each
PR. We evaluate seven baseline approaches (RQ1) as well as
our proposed method, RAR (RQ2). We describe the baseline
approaches below, and describe RAR in Section VI.

1) AuthorshipRec: Suggested by Mockus and Herbsleb [41],
the authorship of a file is an important factor when assigning
software experts to (reviewing) tasks. Bird et al. [42] formulated
the AuthorshipRec in their paper based on the proportion of
the files that a developer modified prior to the PR.

2) RevOwnRec: Thongtanunam et al. [4] suggested a new re-
viewer recommender based on the developers’ previous review
history. The rationale was that the project code reviewers for
each project subsystem are constant most of the time. Similarly
to AuthorshipRec, RevOwnRec considers the proportion of
a developer’s reviews or modifications relative to all of the
reviews and modifications in a PR.

3) cHRev Recommender: The cHRev recommender [19] is
a popular conventional reviewer recommender. When ranking
developers as potential candidates of a code change, cHRev
considers the developer’s expertise from previous reviews as
well as the recency of the contributions. To rate the fit of a
developer D for reviewing a file F, the xFactor was used:

xFactor(D,F) =
Cf

C ′
f

+
Wf

W ′
f

+
1

|Tf − T ′
f |+ 1

(1)

Where Cf , Wf , and Tf represent the number of review
comments, the number of workdays that D commented on
the file’s reviews, and the most recent day that D worked
on F, respectively. The prime versions of the variables in the
denominator represent the total number used to normalize the
output. Then, the fit for each developer is estimated using the
summation of the xFactor for all the files in the code change.

4) LearnRec: The LearnRec recommender is designed to
distribute knowledge among team members. LearnRec suggests
developers who are poised to learn the most from reviewing a
PR. ReviewerKnows has been suggested as a way to measure
how knowledgeable a potential reviewer is about a review
request [13]. The ReviewerKnows estimates how familiar a

developer would be with the modified files of a review request.
It is usually favourable to distribute the knowledge among
developers in repositories to mitigate any loss of knowledge
if any developer leaves the project. To this end, LearnRec is
formulated by subtracting ReviewerKnows from one, which
estimates how much a developer can learn by reviewing a PR.
This metric can be used to create a reviewer recommender
that distributes the knowledge among the project developers by
assigning the review to the developer with the largest LearnRec.

5) RetentionRec: Although LearnRec seems like a rea-
sonable choice to prevent knowledge loss, in reality, many
developers do not contribute to a project over a long time
[43]. Those who stand to learn the most may leave the project
before that knowledge can be put to use. To mitigate this issue,
contribution ratio and consistency ratio have been proposed.
The contribution ratio for a developer is the proportion of
contributions during the previous particular period of time
(e.g., one year) for which the contributor is responsible.
The consistency ratio is the proportion of sub-periods (e.g.,
months) that the developer was actively contributing to the
project throughout a study period (e.g., year). As developers
become more consistent or more (proportionally) active, the
RetentionRec increases, suggesting that it is less likely that
they will leave the project.

6) TurnoverRec: Mirsaeedi and Rigby [13] multiplied
RetentionRec and LearnRec and created TurnoverRec. This
recommender helps with distributing knowledge among the
more active members of the development team. Recommending
reviewers based on this measure minimizes the risk of turnover-
induced knowledge loss caused by developers leaving the
company by distributing knowledge among active members.

7) Sofia: Sofia [13] is a combination of TurnoverRec and
cHRev whose objective is to distribute knowledge among the
more active team members whenever files with a large risk of
knowledge loss are present in a PR. The scoring function used
for the developer (D) and the code change R is:{

cHRev(D,R), if |knowledgeable(f)| ≤ d, anyf |f ∈ R

TurnoverRec(D,R), otherwise
(2)

We consider d=2 in this equation, similar to the original work
by Mirsaeedi and Rigby [13], to prevent any knowledge loss
by leaving one developer from the team.

C. Recommendation Component

We apply these reviewer recommender to our datasets and
calculate the recommenders’ scores for all the candidate re-
viewers. We then rank potential candidates based on the scores.
Configurable parameters include the number of reviewers per
PR and the maximum number of files per PR for the reviewer’s
knowledge. For the purposes of this paper, we choose only the
top suggested candidate per PR and randomly replace it with
one of the actual reviewers (to match prior work [13]). We only
consider PRs with less than 100 files and do not associate the
PR with developers’ knowledge otherwise regarding maximum
files per PR. It is because one developer cannot perceive large
code changes as argued by Bird et al. [44].

V. EVALUATION SETUP

In this section, we describe the evaluation metrics used
to assess the performance of reviewer recommenders and
our rationale for selecting those metrics. As explained in
Section II, conventional recommendation approaches aim to
recommend the reviewers who performed the task [19, 45–47].
However, Kovalenko et al. [21], suggest that recommending
the reviewer who reviewed a PR provides little value to the
project. Furthermore, there exist many qualified developers who
may not have reviewed PR but would have been comfortable
doing so [22]. Conventional evaluation methods consider these
recommendations incorrect and penalize the recommenders for
making such suggestions.

To assess the effect of a recommendation approach on the
mitigation of the risk of fix-inducing PRs, we leverage the
simulation approach presented by Mirsaeedi and Rigby [13].
These measures quantify previously discussed aspects of the
reviewer recommendation process and estimate the performance
of a reviewer recommender through history-based simulation.
We run simulations for the selected projects and compare
the outcome of the recommenders with one another with
respect to the evaluation measures. We expand the set of
evaluation measures proposed by Mirsaeedi and Rigby [13] to
incorporate the CSR — a cumulative measure of the risk
of fix-inducing changes in a given period of time. These
measures originated from the challenges and expectations
of the researchers who studied the code review process and
recommendation approaches prior to this study [1].

In the remainder of this section, we explain each of the
recommendation evaluation measures we employ in this study.
Expertise. Expertise of the reviewers assesses the recom-
mended reviewers by the expertise that they have in the PRs
they have been tasked to review. It is the primary evaluation
criterion used in past studies [48, 49]. Past work has indicated
the important role that involving subject matter experts has on
the review process [6, 14]. To quantify this measure, Mirsaeedi
and Rigby [13] proposed the following measure:

Expertise(Q) =

Reviews(Q)∑
R

FileReviewersKnow(R)

FileUnderReview(R)
(3)

Where Q is the quarter in which this metric is calculated. A
developer is assumed to know a file if they have modified or
reviewed the file prior to the PR reviewing task.
CoreWorkload. Having all PRs reviewed by experts is ideal,
but there is an inherent trade-off between the time that experts
invest in reviewing PRs and the amount of time they have
for other development tasks [14]. The problem amplifies as
projects grow if the core developer teams do not grow as well.
Mirsaeedi and Rigby [13] proposed a static core team size of
the top 10 reviewers and using the following equation, estimate
the reviewing workload that the core team is coping with:

CoreWorkload(Q) =

Top10Reviewers(Q)∑
D

NumReviews(D) (4)

Files at Risk of turnover (FaR). The loss of knowledge
caused by knowledgeable developers leaving a project may
consume resources and even stall its progress. The File at Risk
of turnover (FaR) measures the number of files known by zero
or one developer in a period of one quarter. The formula [44]
to calculate this measure is:

FaR(Q) =
{
f |f ∈ Files, |ActiveDevs(Q,F)| ≤ 1

}
(5)

Where ActiveDevs represent the developers who are familiar
with the set of files F and are still actively contributing to the
project by the end of quarter Q.
Changeset Safety Ratio (CSR). The replacement of reviewers
does not affect the incidences of bugs in our simulation.
Instead, to assess the impact of replacing reviewers on risk,
we assume that having an expert, preferably one who has
recently interacted with files in the code change, will reduce
the likelihood of merging fix-inducing code changes [42]. To
this end, we formulate the Changeset Safety Ratio(CSR) as a
measure of how well the review assignments have mitigated
the fix-inducing likelihood of a set of PRs:

CSR(Q) =

Reviews(Q)∑
R

(1− DefectProb(R))× MaxXFactor(R) (6)

The DefectProb is the risk estimate of a PR being fix-inducing,
and the MaxXFactor is the maximum score of the xFactor
(equation 1) among all the suggested reviewers of a PR.
The xFactor incorporates both the recency and quantity of
contributions in assessing reviewer expertise and is at the core
of the cHRev recommender [19]. If the risk of inducing a future
fix that a PR presents is small, we may assign developers with
less expertise to that code change without impacting the CSR
disproportionately. Increases in CSR indicate that the code
change is less likely to be fix-inducing or that the developer’s
maximum expertise has increased. In either case, increases to
CSR suggest that the review process is performing well in
terms of risk mitigation.

VI. EXPERIMENTAL RESULTS

In this section, we describe our experiments, the results and
the analysis of the results. We use the percentage of change to
evaluate different reviewer recommenders’ performance:

∆MeasureChange(Q) = (SimulatedMeasure(Q)
ActualMeasure(Q) − 1)× 100 (7)

The ActualMeasure and SimulatedMeasure refer to the
calculated evaluation metric for the historical data and a
simulation run, respectively.

RQ1: How do existing code reviewer recommenders perform
with respect to the risk of inducing future fixes?

In this experiment, we seek to determine whether reviewer
recommenders mitigate the risk of inducing future fixes by
introducing an evaluation measure (CSR).
Approach. For each studied system, we analyze the historical
data and fit one model per quarter to estimate the likelihood that
a PR is fix-inducing. Then, starting from the second quarter,

Table I: Recommender performance vs. reality. Up and down
arrows indicate improvement and degradation, respectively.

CRR Project Expertise Workload FaR CSR

A
ut

ho
rs

hi
pR

ec

Roslyn 15.52% ↑ -7.045% ↑ 34.91% ↓ 17.50% ↑

Rust 10.64% ↑ 4.09% ↓ 42.58% ↓ 16.66% ↑

Kubernetes 12.87% ↑ -2.07% ↑ 18.60% ↓ 18.36% ↑

R
ev

O
w

nR
ec Roslyn 21.82% ↑ 1.83% ↓ 17.5% ↓ 2.76% ↑

Rust 12.72% ↑ 8.16% ↓ 98.62% ↓ -9.57% ↓

Kubernetes 18.56% ↑ 3.89% ↓ -4.05% ↑ 1.08% ↑

cH
R

ev

Roslyn 12.35% ↑ -1.52% ↑ 0% − 75.06% ↑

Rust 7.72% ↑ -2.11% ↑ 11.84% ↓ 92.09% ↑

Kubernetes 13.97% ↑ -3.06% ↑ -11.27% ↑ 104.31% ↑

L
ea

rn
R

ec Roslyn -23.85% ↓ -34.77% ↑ 138.84% ↓ -36.20% ↓

Rust -50.27% ↓ -50.26% ↑ 122.63% ↓ -61.44% ↓

Kubernetes -34.98% ↓ -34.55% ↑ 49.1% ↓ -46.38% ↓

R
et

en
tio

nR
ec

Roslyn 22.92% ↑ 20.36% ↓ -23.89% ↑ -27.22% ↓

Rust 13.38% ↑ 15.70% ↓ -16.86% ↑ -4.56% ↓

Kubernetes 19.75% ↑ 47.78% ↓ -20.94% ↑ -37.07% ↓
Tu

rn
ov

er
R

ec Roslyn -14.66% ↓ 0.67% ↓ -38.33% ↑ -33.51% ↓

Rust -34.21% ↓ -4.38% ↑ -23.66% ↑ -53.43% ↓

Kubernetes -25.72% ↓ -0.09% ↑ -30.32% ↑ -44.49% ↓

So
fia

Roslyn 7.38% ↑ 4.03% ↓ -34.9% ↑ 55.22% ↑

Rust 4.97% ↑ 0% - -25.42% ↑ 73.09% ↑

Kubernetes 9.42% ↑ 1.70% ↓ -28.67% ↑ 96.74% ↑

we use a model fit of the previous quarter to estimate the
fix-inducing likelihood of each PR. We use PR metrics listed
in table 2 in the supporting online materials [34] as the model’s
input. We then rank potential reviewers for each PR using the
seven baseline recommendation approaches. For every PR in
each studied system, we swap one of the actual reviewers with
our top candidate and evaluate the performance of this change
by calculating the MeasureChange according to Equation 7.
Results. Table I presents the results of this experiment. The
up and down arrows next to the numbers indicate performance
improvement and degradation, respectively.
Analysis. For AuthorshipRec, code owners are predominantly
assigned to reviews. Thus, increases to CSR are not unexpected,
since coders owners are among the most knowledgeable contrib-
utors to whom reviewing tasks may be assigned. However, this
assignment prevents others from learning about files they have
not developed, which causes the files at risk of turnover measure
to degrade. For RevOwnRec, each studied system has a trusted
developer circle for the reviews; hence this recommender fails
to optimally distribute knowledge and improve files at risk of
turnover. Since these reviewers may not be the file owners,
the CSR also tends to decrease or not to change considerably.

Figure 2: Relation analysis of CSR and Files at Risk of turnover.

For cHRev, the score function is based on xFactor. Hence,
the CSR is consistently improved, notably at the cost of limiting
the improvement of workload for the core development team
in comparison to other recommendation approaches.

For LearnRec, there is no consideration for the retention
of recommended candidates, so the files at risk of turnover
measure tends to increase because many reviewers leave the
project. The suggested reviewers by this recommendation
system are not experts, but seek to learn by reviewing the
PR, so the CSR measure tends to decrease.

For RetentionRec, the recommender suggests candidates with
the most knowledge about the project, not a specific PR. As
a result, undesirably, the core developers’ workload increases
because they are mostly permanent developers of a project.
However, their knowledge causes CSR and expertise to improve.

For TurnoverRec, the recommender favours the most per-
manent candidates, regardless of the degree of knowledge
that they have about the code being modified by a PR. This
bias leads to knowledge retention, thus improving files at risk
of turnover. However, since distributing knowledge among
developers is an important risk mitigation measure, the choice
of less knowledgeable candidates causes the CSR to decrease.

For Sofia, when none of the changed files are at risk of
turnover, cHRev is used. This compensates for expertise and
CSR measures that are lost due to knowledge distribution caused
by TurnoverRec. However, most of the time, this is at the cost
of increasing the workload for the core development team.
Sofia uses TurnoverRec for changesets with files at risk of
knowledge loss, which has a favourable effect and causes the
files at risk of turnover measure to improve.

Figure 2 shows the relation between CSR and files at risk of
turnover in our experiments. The bottom-left quadrant shows
evidence of a trade-off between CSR and Files at Risk for
approaches that optimize only one characteristic. Meanwhile,
cHRev and Sofia mostly present results in the top-left quadrant.
This indicates that they are generally robust to the trade-off
between CSR and files at risk of turnover, and can broadly
optimize both the risk of knowledge turnover and CSR. Finally,
the bottom-right quadrant shows that optimizing for learning
opportunities (e.g., using LearnRec) negatively impacts both
files at risk of turnover and CSR.

These observations indicate that if there is no deliberate
effort to distribute knowledge, as the files at risk of turnover

improves, unless the necessary restrictions are put in place,
such as a limitation on the most knowledgeable reviewers,
the CSR degrade. This decrease, in turn, increases the chance
of merging a fix-inducing PR into the project. This suggests
that there is an inherent trade-off between the files at risk of
turnover and CSR evaluation measures. This does not hold
in all cases. For example, in LearnRec, both files at risk
of turnover and CSR decreases which is likely because the
recommended candidates leave the project as retention is not
considered in the score function. Since leavers may leave a
gap in the team understanding of an area of the codebase, the
files at risk of turnover and CSR measures tend to degrade. For
Sofia, the recommender’s candidate scoring function maximizes
the expertise of the reviewers unless there is a file with few
knowledgeable developers in the changeset. In these cases Sofia
tries to distribute knowledge which lessens the core workload
and improves the files at risk of turnover. This active effort
cancels out the native trade-off and improves both files at
risk of turnover and CSR.Sofia works better in terms of fix-
inducing code changes, but like other approaches, it does not
have any parameter to control the sensitivity to these changes.
The inflexibility may become a barrier to adoption for this
recommender as it cannot be tuned to suit the needs of users.

The evaluation results indicate that unless active effort is put
into knowledge distribution while keeping the expertise high,
the CSR and files at risk of turnover have an innate trade-off.
In cases where both CSR and files at risk of turnover are
maximized, other measures such as core developer workload
suffer. Hence, one cannot simultaneously optimize suggested
reviewers with respect to the risks of knowledge loss and
fix-inducing changes.

RQ2: How can the risk of fix-inducing code changes be
effectively balanced with other quantities of interest?

To balance the innate trade-off between files at risk of
turnover and CSR, we suggest using a hybrid reviewer
recommendation approach to optimize the recommendation
process based on the PR fix-inducing likelihood. We propose a
recommender to improve the CSR when a PR has a high risk
of being fix-inducing. The objective function for the proposed
Risk Aware Recommender (RAR) is formulated as:

RAR(D,R) =

{
Sofia(D,R), DefectProb(R) ≤ PD

cHRev(D,R), otherwise
(8)

In this formula, the PD represents the threshold for the
likelihood of PRs to be fix-inducing. If the PD threshold is
exceeded, cHRev is used to suggest experts. Otherwise, Sofia
will suggest reviewers for the PR. The cHRev ranks candidate
reviewers based on their familiarity with the changed files
while Sofia opportunistically distributes knowledge when the
modified files are not at risk of turnover.
Approach. We study the performance of RAR in terms of
the coreWorkload, files at risk of turnover, expertise, and
CSR measures. We also study the impact that varying the
PD threshold from 0.1 to 0.9 has on RAR performance.

(a) Roslyn (b) Rust (c) Kubernetes

Figure 3: The effect of PD on the performance of RAR for each evaluation metric, on different projects over different quarters.

Results. Figure 3 shows the evaluation measures as the PD

changes for the studied systems.
Analysis. Figure 3 shows that as the value of PD increases,
the tolerance of RAR for fix-inducing PR grows. As a result,
we expect more knowledge distribution leading to a decrease
in CSR. As fewer experts are assigned to the tasks, the overall
expertise also diminishes, which is not an unexpected outcome.

However, there are project-specific trends that are worth
noting. For example, Figure 3a shows that the evaluation
measures for the Roslyn project are steadily declining as PD

increases, whereas Figure 3c shows that the majority of the
impact of varying PD in the Kubernetes project takes place
between PD = 0.1 and PD = 0.3. Moreover, Figure 3b shows
that for Rust, the impact of varying PD is relatively small.
Overall, the Risk Aware Recommender (RAR) yields an average
change of 12.48%, 0.93%, -19.39% and 80.00% over different
quarters for evaluation measures of Expertise, Core workload,
files at risk of turnover and CSR, respectively.

A closer look at the model estimates of the likelihood of fix-
inducing changes helps to explain these project-specific trends.
Figure 4 shows the distributions of the estimated likelihood
of changes being fix inducing stratified by project and quarter
for four quarters (The complete distribution can be found in
our supporting material’s Figure 1 [34]) . We observe that,
unsurprisingly, larger performance fluctuations in Figure 3
are associated with the PD values where the majority of the
estimated likelihoods lie in Figure 4. Moreover, despite an
overall decreasing trend in terms of the likelihood of fix-
inducing changes over time, the trend of each quarter is
similar to its adjacent quarters. This local similarity may help
stakeholders to effectively tune PD values (see RQ3 for a more
detailed analysis).

The RAR settings can be tuned to balance the risks of
knowledge loss and fix-inducing changes. Indeed, as the
threshold for indicating tolerance of the risk of fix-inducing
changes increases, the risk of knowledge loss impacts fewer
files. However, identifying the optimal threshold setting
requires an awareness of project-specific trends in the model
estimates of the likelihood of fix-inducing changes.

Figure 4: Distributions of pre-
dicted defect probabilities.

R
isk−

averse
R

isk−
balanced

R
isk−

tolerant

dynamic
vs norm

dynamic
vs static

norm
vs static

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15
0.20

Method Pairs

P
−

V
al

ue
s

Roslyn Rust Kubernetes

Figure 5: Conover Test
results.

RQ3: How can we identify an effective fix-inducing likelihood
threshold (PD) interval for a given project?

Our analysis from RQ2 indicates that the performance of the
RAR is sensitive to the PD setting. The effective range of PD

is dependent on the past likelihood of fix-inducing changes. In
this question, we seek to propose an approach to help project
stakeholders in the selection of effective PD settings based on
their tolerance for the risk of fix-inducing changes.
Approach. We explore the following three approaches to
identify effective periods:

• Static method: This baseline considers the effective period
spans the entire range between 0 and 1.

• Normalization method: The effective range spans be-
tween upper and lower extremes of the distribution of
likelihoods from the prior periods. To match common
outlier definitions, we set out lower and upper extremes to
Q1−1.5× IQR and Q3 + 1.5× IQR, respectively, where
Qi is the ith Quartile, and IQR is the Interquartile range
between Q1 and Q3. All examples within the range are
normalized by the maximum value.

• Dynamic method: A selective variant of the normalization
method. Instead of considering all previous periods, we
only consider the last six months. This allows the model
to focus on the current part of the project life cycle.

For each of these three methods, we simulate three different
thresholds: 25% (risk-averse recommendation), 50% (balanced
recommendation), and 75% (risk-tolerant recommendation) of
the effective period for our three projects in the dataset.

Results. Figure 6 shows distributions of relative improvement
in CSR that are achieved for different time periods (points) of
the studied systems (plot columns) of our approaches (y-axes)
in different configurations (plot rows).
Analysis. We use the Friedman test (two-tailed, paired, α =
0.05) [50] and apply it to the CSR performance data (Table II).
We observe significant differences between the investigated
methods in all configurations except for Roslyn in the risk
tolerant setting. Next, we use Kendall’s W to determine the
magnitude of this effect [51] (Table III). Large and small effects
are observed in 55% and 22% of the cases, respectively.

We apply the Conover test to discern which pairs cause this
significant difference [52]. Figure 5 shows p-values for different
thresholds with red lines indicating the 0.05 confidence interval.
The results imply that the dynamic method significantly affects
risk-averse (PD = 25%) and risk-balanced (PD = 50%)
recommendations in all studied systems. For the normalization
method, the effect on the results is inconsistent. The dynamic
method considers the pivot of the project in various periods,
which affects the CSR. In contrast, the normalization method
considers the entire history and may not be sensitive enough
to react to risk fluctuations as projects age [53].

On the other hand, for risk-tolerant recommendations (PD =
75%), none of the methods have a consistent effect on the
results due to the difference in the distribution of defect
proneness for various periods. Roslyn has a high rate of fix-
inducing PRs (PD > 0.5) in all the periods, so the approach
does not affect the results. However, Kubernetes, which has
more fix-inducing PRs in the earlier periods than more recent
ones, is affected mainly through a dynamic method.

For risk-averse (PD = 25%) and risk-balanced (PD = 50%)
recommendations, the dynamic method tends to provide the
most value by recommending an effective period while for risk-
tolerant recommendation (PD = 75%), none of the methods
outperform others significantly.

VII. PRACTICAL IMPLICATIONS

Below, we summarize what we believe are the practical
implications of greatest value for practitioners and researchers.
RQ1) Practitioners can use code review to balance files at
risk of abandonment with the risk of fix-inducing changes.
Our observations in RQ1 show that if the likelihood of a PR
inducing a fix is not considered explicitly as a parameter in the
recommenders’ objective function, the recommended reviewers
may lack the subject matter expertise to prevent future fixes,
and in turn, increase the risk of merging fix-inducing PRs.
The results also show an inherent trade-off between some of
the evaluation measures, such as files at risk of turnover, and
the risk of merging fix-inducing PRs. We propose CSR as
a heuristic to assess the degree to which a (recommended)
reviewer assignment mitigates the risk of fix-inducing changes.
RQ2,RQ3) RAR can be tuned according to the tolerance
of the risk of fix-inducing changes without drastically
impacting other properties of interest of the recommended
reviewing assignment. Our observations in the first research

Kubernetes Roslyn Rust
R

isk−
averse

R
isk−

balanced
R

isk−
tolerant

50 100 0 50 100 150 0 200 400

dynamic

norm

static

dynamic

norm

static

dynamic

norm

static

Performance Improvement (%)

M
et

ho
ds

Figure 6: The distribution of performance improvement for
CSR for different project over time.

question indicate that active effort should be made to mitigate
the inherent trade-off between CSR and files at risk of turnover.
To this end, RAR is proposed, which uses the PD setting, as
the threshold for the likelihood of a PR being fix inducing,
to influence the suggested set of reviewers. The results of the
second research question illustrate that RAR prevents other
evaluation measures from being drastically impacted. The PD

setting can be tuned using a combination of our proposed
dynamic method (see RQ3) and input from stakeholders about
their tolerance of risk for fix-inducing changes. While project-
specific characteristics (e.g., the incidence rate of fix-inducing
changes) impact the sensitivity of the approach to the PD

setting, our dynamic approach can be scaled to apply well in
different risk tolerance settings.

VIII. THREATS TO VALIDITY

Below, we discuss the threats to the validity of our study.
Construct Validity. Our implementations may contain errors.
To mitigate this risk, we augment an existing data set and
vetted code from prior work [13] rather than producing our
own from scratch. We share our implementation openly to
enable the community to audit and build upon our code [54].

It is also possible that CSR does not truly reflect how well fix-
inducing code changes are mitigated when assigning reviewers
in reality. Because we cannot go back in time and change
existing assignments to observe how well CSR truly performs,
we evaluate its performance using historical data. We mitigate
the chances of CSR being a poor refection of reality by basing
it on proven measurements such as the fix-inducing likelihood
and the xFactor [19]. Furthermore, the main idea behind CSR,
that experts that have recently interacted with files in a code

Table II: The χ2 and p-value results (two degrees of freedom) of the Friedman test applied to the RQ3 values.
`````````Project

Threshold 25% 50% 75%
Chi-Square p-value Chi-Square p-value Chi-Square p-value

Roslyn 10.7 0.00473 12.8 0.00164 2.47 0.291
Rust 41.7 < 0.001 38.6 < 0.001 15.8 < 0.001

Kubernetes 23.1 < 0.001 16.5 < 0.001 20.6 < 0.001

Table III: Effect size and magnitude for Kendall’s W (RQ3).
`````````Project

Threshold 25% 50% 75%
Effsize magnitude Effsize magnitude Effsize magnitude

Roslyn 0.315 moderate 0.377 moderate 0.0727 small
Rust 0.695 large 0.643 large 0.264 small

Kubernetes 0.607 large 0.435 moderate 0.543 large

change reduce the likelihood of merging fix-inducing code
changes, has been shown to reflect reality in prior studies [42].

To obtain data at a scale required for this study we
must use automated tools. However, such approaches are not
perfect and may induce errors in our results. To prevent any
implementation errors, we use an existing tool (Commit Guru).
We sampled the tool’s output and manually verified the results.
The resulting precision (i.e., 43.9% with confidence=95% and
margin=±5%), aligns with prior works [36, 37]. While SZZ
may introduce errors into our dataset, our results show that
reviewer recommendations can still suggest the most relevant
reviewer to reduce fix inducing changes, even when trained
on noisy data. Future tools could be used to improve the
performance of the approach.
Internal Validity. In this study, we consider the effect of
assigning experts to review PRs that are potentially fix-inducing
using measures, such as CSR. While assigning experts rather
than novices to review PRs may change such measures, it
does not guarantee that they will actually spot more defects.
It is possible that other factors, that do not reflect a reduction
in defects, are influencing the changes in CSR. However,
prior studies have shown that experts increase the possibility
of detecting fix-inducing PRs before merging, we therefore
believe that similar outcomes should hold for our study. Further
studies might help to clearly identify the impact of reviewers’
experience and CSR on catching bugs during the PR process.

The defect prediction in Rust presents a low balanced
accuracy. However, the other two projects yield similar results
in different experiments, which we believe voids the possibility
of the effect of this low accuracy in our experiments.
External Validity. While we apply eight different approaches to
three systems, it is possible that our results might not generalize
to other approaches or systems. We mitigate this threat by using
a large number of approaches and systems with many files
and a high volume of PRs. We target such systems because
reviewer recommenders are most beneficial in big repositories
with many developers. Through this selection we aim to make
our findings applicable to the most pertinent systems.

IX. CONCLUSIONS

In this study, we set out to explore how using a code reviewer
recommender to suggest reviewers can affect the risk of defect

proneness. To this end, we introduce a new evaluation measure,
CSR, and assess seven existing reviewer recommenders against
this new measure. Three other measures previously used in the
literature are also compared. The results show an inherent trade-
off between files at risk of turnover and CSR – improvements
to one measure often degrade the performance of the other.
To balance this trade-off, an adjustable multi-objective code
reviewer recommender, RAR is proposed. We analyze how RAR
can be used to tune the recommendations with respect to the
tolerance of the risks of fix-inducing PRs and files at risk of
knowledge loss. Our findings suggest that:

• There is a trade-off between knowledge distribution
and the likelihood of merged PRs being fix-inducing.
However, this trade-off may be resolved by simultaneously
optimizing recommendation strategies for both measures.
This optimization, in turn, may lead to a decrease of other
evaluation measures like core developers’ workload.

• RAR can be tuned to balance the risk of knowledge loss
and fix-inducing changes by tuning the PD setting. How-
ever, identifying the optimal threshold setting requires an
awareness of project-specific trends in the model estimates
of the likelihood of fix-inducing changes. The results
yield the average change of 12.48%, 0.93%, -19.39% and
80.00% over different quarters for evaluation measures
Expertise, Core workload, files at risk of turnover and CSR,
respectively. For the proposed measure, CSR, the average
change is 73.80%-102.04% for various PD settings.

• Project stakeholders can use RAR with a dynamic method
for identifying effective range for the PD setting. The dy-
namic method provides better performance for risk-averse
and risk-balanced reviewer recommendation strategies
while not hurting the risk-tolerant strategy’s performance.

In future work, we plan to build an application on top of
reviewer recommendation approaches such as RAR to study
their effect of various in a live environment (e.g., Github).
Moreover, we believe that investigating other measurements
that estimate the risk of fix-inducing PRs could yield even
more suitable candidates for CSR. Future work should also
investigate the effects of using inaccurate bug detection methods
on the results of reviewer recommenders such as RAR. To allow
continued progress in this line of inquiry, we have made our
code and dataset available online [54].

REFERENCES

[1] A. Bacchelli and C. Bird, “Expectations, outcomes,
and challenges of modern code review,” in 2013 35th
International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 712–721.

[2] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and
M. W. Godfrey, “Investigating code review quality: Do
people and participation matter?” in 2015 IEEE international
conference on software maintenance and evolution (ICSME).
IEEE, 2015, pp. 111–120.

[3] M. di Biase, M. Bruntink, and A. Bacchelli, “A security
perspective on code review: The case of chromium,” in
16th International Working Conference on Source Code Analysis
and Manipulation (SCAM). IEEE, 2016, pp. 21–30.

[4] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida,
“Revisiting code ownership and its relationship with
software quality in the scope of modern code review,”
in Proceedings of the 38th international conference on software
engineering, 2016, pp. 1039–1050.

[5] H. Bodner, “10 reasons why code reviews
make better code and better teams,” May 2018.
[Online]. Available: https://simpleprogrammer.com/
why-code-reviews-make-better-code-teams/

[6] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley,
“Process aspects and social dynamics of contemporary
code review: Insights from open source development
and industrial practice at microsoft,” IEEE Transactions on
Software Engineering, pp. 56–75, 2016.

[7] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Cz-
erwonka, “Code reviewing in the trenches: Challenges
and best practices,” IEEE Software, pp. 34–42, 2017.

[8] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and
A. Bacchelli, “Modern code review: a case study at
google,” in Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Practice,
2018, pp. 181–190.

[9] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida,
and H. Iida, “Improving code review effectiveness through
reviewer recommendations,” in Proceedings of the 7th
International Workshop on Cooperative and Human Aspects of
Software Engineering, 2014, pp. 119–122.

[10] M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and
M. A. Gerosa, “Effects of adopting code review bots on
pull requests to oss projects,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2020, pp. 1–11.

[11] K.-H. Yang, T.-L. Kuo, H.-M. Lee, and J.-M. Ho, “A
reviewer recommendation system based on collaborative
intelligence,” in 2009 IEEE/WIC/ACM International Joint Con-
ference on Web Intelligence and Intelligent Agent Technology.
IEEE, 2009, pp. 564–567.

[12] S. Rebai, A. Amich, S. Molaei, M. Kessentini, and
R. Kazman, “Multi-objective code reviewer recommenda-
tions: balancing expertise, availability and collaborations,”
Automated Software Engineering, pp. 301–328, 2020.

[13] E. Mirsaeedi and P. C. Rigby, “Mitigating turnover
with code review recommendation: Balancing expertise,
workload, and knowledge distribution,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering, 2020, pp. 1183–1195.

[14] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code
review quality: how developers see it,” in Proceedings of
the 38th International Conference on Software Engineering,
2016, pp. 1028–1038.

[15] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer
recommendation for pull-requests in github: What can we
learn from code review and bug assignment?” Information
and Software Technology, pp. 204–218, 2016.

[16] M. Torchiano, F. Ricca, and A. Marchetto, “Are web
applications more defect-prone than desktop applications?”
International journal on software tools for technology transfer,
pp. 151–166, 2011.

[17] N. U. Eisty and J. C. Carver, “Developers perception
of peer code review in research software development,”
Empirical Software Engineering, pp. 1–26, 2022.

[18] X. Ye, Y. Zheng, W. Aljedaani, and M. W. Mkaouer,
“Recommending pull request reviewers based on code
changes,” Soft Computing, pp. 5619–5632, 2021.

[19] M. B. Zanjani, H. Kagdi, and C. Bird, “Automatically
recommending peer reviewers in modern code review,”
IEEE Transactions on Software Engineering, pp. 530–543,
2015.

[20] W. H. A. Al-Zubaidi, P. Thongtanunam, H. K. Dam,
C. Tantithamthavorn, and A. Ghose, “Workload-aware
reviewer recommendation using a multi-objective search-
based approach,” in Proceedings of the 16th ACM Interna-
tional Conference on Predictive Models and Data Analytics in
Software Engineering, 2020, pp. 21–30.

[21] V. Kovalenko, N. Tintarev, E. Pasynkov, C. Bird, and
A. Bacchelli, “Does reviewer recommendation help de-
velopers?” IEEE Transactions on Software Engineering, pp.
710–731, 2018.

[22] I. X. Gauthier, M. Lamothe, G. Mussbacher, and S. McIn-
tosh, “Is Historical Data an Appropriate Benchmark for
Reviewer Recommendation Systems? A Case Study of the
Gerrit Community,” in Proc. of the International Conference
on Automated Software Engineering (ASE), 2021, p. To appear.

[23] J. Nam, “Survey on software defect prediction,” Depart-
ment of Compter Science and Engineerning, The Hong Kong
University of Science and Technology, Tech. Rep, 2014.

[24] J. Xuan, Y. Hu, and H. Jiang, “Debt-prone bugs:
technical debt in software maintenance,” arXiv preprint
arXiv:1704.04766, 2017.

[25] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?” ACM sigsoft software engineering
notes, pp. 1–5, 2005.

[26] E. C. Neto, D. A. Da Costa, and U. Kulesza, “The
impact of refactoring changes on the szz algorithm: An
empirical study,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2018, pp. 380–390.

https://simpleprogrammer.com/why-code-reviews-make-better-code-teams/
https://simpleprogrammer.com/why-code-reviews-make-better-code-teams/

[27] S. Davies, M. Roper, and M. Wood, “Comparing text-
based and dependence-based approaches for determining
the origins of bugs,” Journal of Software: Evolution and
Process, pp. 107–139, 2014.

[28] C. Rosen, B. Grawi, and E. Shihab, “Commit guru:
Analytics and risk prediction of software commits,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2015. ACM, 2015,
pp. 966–969.

[29] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus,
A. Sinha, and N. Ubayashi, “A large-scale empirical study
of just-in-time quality assurance,” IEEE Trans. Softw. Eng.,
pp. 757–773, Jun. 2013.

[30] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi,
“Deepjit: an end-to-end deep learning framework for
just-in-time defect prediction,” in 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories
(MSR). IEEE, 2019, pp. 34–45.

[31] S. McIntosh and Y. Kamei, “Are fix-inducing changes
a moving target? a longitudinal case study of just-in-
time defect prediction,” IEEE Transactions on Software
Engineering, pp. 412–428, 2017.

[32] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained
just-in-time defect prediction,” Journal of Systems and
Software, pp. 22–36, 2019.

[33] M. K. Thota, F. H. Shajin, and P. Rajesh, “Survey
on software defect prediction techniques,” International
Journal of Applied Science and Engineering, pp. 331–344,
2020.

[34] anonymous, 2022, supporting online materials.
[Online]. Available: https://zenodo.org/record/6727155#
.YrYCtejMI2w

[35] E. Mirsaeedi and P. C. Peter, 2020, relationalGit. [Online].
Available: https://github.com/cesel/relationalgit

[36] S. Quach, M. Lamothe, Y. Kamei, and W. Shang, “An
empirical study on the use of szz for identifying induc-
ing changes of non-functional bugs,” Empirical Software
Engineering, pp. 1–25, 2021.

[37] S. Quach, M. Lamothe, B. Adams, Y. Kamei, and
W. Shang, “Evaluating the impact of falsely detected
performance bug-inducing changes in jit models,” Empiri-
cal Software Engineering, pp. 1–32, 2021.

[38] G. Rodríguez-Pérez, G. Robles, A. Serebrenik, A. Zaid-
man, D. M. Germán, and J. M. Gonzalez-Barahona, “How
bugs are born: a model to identify how bugs are introduced
in software components,” Empirical Software Engineering,
pp. 1294–1340, 2020.

[39] J. Ekanayake, J. Tappolet, H. C. Gall, and A. Bernstein,
“Tracking concept drift of software projects using defect
prediction quality,” in International Working Conference on
Mining Software Repositories. IEEE, 2009, pp. 51–60.

[40] R. TAY, “Correlation, variance inflation and multicollinear-
ity in regression model,” Journal of the Eastern Asia Society
for Transportation Studies, pp. 2006–2015, 2017.

[41] A. Mockus and J. D. Herbsleb, “Expertise browser:
a quantitative approach to identifying expertise,” in

Proceedings of the 24th international conference on software
engineering. icse 2002. IEEE, 2002, pp. 503–512.

[42] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. De-
vanbu, “Don’t touch my code! examining the effects of
ownership on software quality,” in Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, 2011, pp. 4–14.

[43] M. Zhou and A. Mockus, “What make long term contrib-
utors: Willingness and opportunity in oss community,” in
2012 34th International Conference on Software Engineering
(ICSE). IEEE, 2012, pp. 518–528.

[44] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus,
“Quantifying and mitigating turnover-induced knowledge
loss: case studies of chrome and a project at avaya,” in
2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE). IEEE, 2016, pp. 1006–1016.

[45] V. Balachandran, “Reducing human effort and improving
quality in peer code reviews using automatic static
analysis and reviewer recommendation,” in 2013 35th
International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 931–940.

[46] C. Hannebauer, M. Patalas, S. Stünkel, and V. Gruhn,
“Automatically recommending code reviewers based on
their expertise: An empirical comparison,” in Proceedings
of the 31st IEEE/ACM International Conference on Automated
Software Engineering, 2016, pp. 99–110.

[47] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct:
code reviewer recommendation in github based on cross-
project and technology experience,” in Proceedings of
the 38th international conference on software engineering
companion, 2016, pp. 222–231.

[48] J. Kim and E. Lee, “Understanding review expertise of
developers: A reviewer recommendation approach based
on latent dirichlet allocation,” Symmetry, p. 114, 2018.

[49] M. Chouchen, A. Ouni, M. W. Mkaouer, R. G. Kula,
and K. Inoue, “Recommending peer reviewers in modern
code review: a multi-objective search-based approach,” in
Proceedings of the 2020 Genetic and Evolutionary Computation
Conference Companion, 2020, pp. 307–308.

[50] M. Friedman, “A comparison of alternative tests of
significance for the problem of m rankings,” The Annals
of Mathematical Statistics, pp. 86–92, 1940.

[51] M. G. Kendall et al., “The advanced theory of statistics.
vols. 1.” The advanced theory of statistics. Vols. 1., 1948.

[52] W. Conover and R. L. Iman, “On some alternative
procedures using ranks for the analysis of experimental
designs,” Communications in Statistics-Theory and Methods,
pp. 1349–1368, 1976.

[53] S. McIntosh and Y. Kamei, “Are Fix-Inducing Changes
a Moving Target? A Longitudinal Case Study of Just-
In-Time Defect Prediction,” IEEE Transactions on Software
Engineering, p. 412–428, 2018.

[54] anonymous, 2022, replication package for this paper.
[Online]. Available: https://github.com/software-rebels/
RAR_Recommender

https://zenodo.org/record/6727155#.YrYCtejMI2w
https://zenodo.org/record/6727155#.YrYCtejMI2w
https://github.com/cesel/relationalgit
https://github.com/software-rebels/RAR_Recommender
https://github.com/software-rebels/RAR_Recommender

	Introduction
	Related Work
	Studied Datasets
	Study Design
	Identifying and Predicting Fix-Inducing PRs
	Ranking potential reviewers of a PR
	AuthorshipRec
	RevOwnRec
	cHRev Recommender
	LearnRec
	RetentionRec
	TurnoverRec
	Sofia

	Recommendation Component

	Evaluation Setup
	Experimental Results
	Practical Implications
	Threats to Validity
	Conclusions

